受験算数。直方体の展開図に関する、ちょっとした難問。

セギ

2025年02月26日 12:05


上の図は、直方体の展開図です。
(1) 図のアの長さを求めなさい。
(2) 上の図の直方体の体積を求めなさい。

自分で解いてみたい方は、ここでいったんブログを閉じてください。

この問題、わかってみれば簡単なのですが、頭が固いと、意外と苦戦します。
まず、図の見た目が、普段見慣れている直方体と異なることが、わかりにくくなる一因でしょう。
このT字形が直方体の展開図であることがそもそも理解できない、ということがあり得ます。

手を使って、図に書き込んでみる習慣のない子も苦戦します。
ただ図を眺めるだけで終わってしまうのです。
「何か書き込んでみて」
と問いかけても、
「書き方がわからない」
と答えます。
すべてが杓子定規で、解き方を教わったことのある問題しか解けない・・・。
図に何か書き込むのなら、その書き方も教わらないとわからない・・・。
臨機応変に対処するということができないのです。

「展開図は、普通、折れ線の点線が入っていますよね。それを書き込んでみましょう」
そのように問いかけても、書いていない折れ線は復元できないと言いたげに、私を見つめ返す・・・。
日頃の観察力が不足しているので、折れ線はどんなふうに入っていたのか、思い出すことができないのかもしれません。
直方体なのだから、もともとある線分と平行か垂直の点線が描かれるはず・・・という知識がない。
そういうこともあるかもしれません。

シンプルに見えて、子どもの学力を測るのに適切な問題。
この問題は良問です。

さて、解答編です。
この図のわかりにくさは、いつもの直方体の展開図とは向きが異なっていることにあります。
いつもなら、2つの底面は上下に描かれているものですが、これは、左右に2つの底面が飛び出ています。
そのことに気づけば、後の発想はかなり楽になると思います。
必要な折れ線を図に書き込んでみましょう。



これでかなりわかりやすくなりました。
展開図を組み立てたとき、4㎝の辺は、上の図の位置になります。
4㎝の長さとなる辺も赤で書き込みました。
また、アの辺と同じ長さの辺、2か所も、赤で書き込みました。
これでわかりました。

(1)は、
8-4=4
4÷2=2

で、アは、2㎝です。

続いて(2)
直方体の体積。
(1)で、直方体の底面の縦は2㎝、横は4㎝とわかりました。
では、直方体の高さは?
これも、もう簡単です。
10㎝のうち、2か所の2㎝を取り除けば、高さが求められます。
10-2×2=6
高さは6㎝とわかりました。
したがって、直方体の体積は、
2×4×6=48
答えは、48立方㎝


わかってしまえば簡単なのです。
でも、行き詰ってしまう子も多い。
わかるまで、自力で格闘してみたい問題です。




関連記事