たまりば

  地域と私・始めの一歩塾 地域と私・始めの一歩塾  三鷹市 三鷹市

2018年06月13日

夏期講習のお知らせ。2018年夏。


2018年度夏期講習のお知らせです。
詳細は、各生徒さんに書面をお渡ししますのでご覧ください。
お申込み受付は、7月1日(日)からとなります。
申込書またはメールでお申込みください。
受付順にご予約となります。
この期間、通常授業はありませんので、いつもの時間帯の授業を希望される方も改めてお申込みください。
8月通常授業はございませんので、8月分通常授業料のお支払いは不要です。
外部生のお申込みも可能です。
外部生の方は、パソコン画面左のお問い合わせボタンからお問い合わせください。

以下は、夏期講習募集要項です。

◎期日
7月23日(月)~9月1日(土) 
ただし、毎週日曜日と、8月13日(月)~18日(土)は休校となります。
7月中に夏期講習の前倒し授業をご希望の方はご連絡ください。
対応可能です。

◎時間帯
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

◎費用
1コマ90分4,000円×受講回数+諸経費4,000円

◎指導科目
小学生 一般算数・受験算数・英語
中学生 数学・英語
高校生 数学・英語

◎空きコマ状況 7月1日現在
7月23日(月)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

7月24日(火)
15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

7月25日(水)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

7月26日(木)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

7月27日(金)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

7月28日(土)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

7月30日(月)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

7月31日(火)
15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月1日(水)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月2日(木)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月3日(金)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月4日(土)
13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月6日(月)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月7日(火)
15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月8日(水)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月9日(木)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月10日(金)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月11日(土)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月20日(月)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月21日(火)
15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月22日(水)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月23日(木)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月24日(金)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月25日(土)
13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月27日(月)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月28日(火)
15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月29日(水)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月30日(木)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

8月31日(金)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

9月1日(土)
10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

  


  • Posted by セギ at 15:27Comments(0)大人のための講座

    2018年06月13日

    6月23日(土)、大人のための数学教室を開きます。



    6月9日(土)、大人のための数学教室を開きました。
    今回で、数Ⅱの第1章「式と証明」もついに最終回です。

    問題 3次方程式 x3-x2+2x-3=0 の3つの解をα、β、γとするとき、次の3つの数を解とする3次方程式を求めよ。
    (1)2α, 2β, 2γ
    (2)αβ, βγ, γα
    (3)α+β, β+γ, γ+α
    (4)α2, β2, γ2

    これは解と係数の関係の問題です。
    まずは2次方程式の解と係数の関係の復習をしておきましょう。
    2次方程式 ax2+bx+c=0 の2つの解をα、βとすると、
    α+β=-b/a , αβ=c/a

    そんなのありましたね。
    それの3次方程式バージョンが今回の問題です。
    では、3次方程式の解と係数の関係について確認しましょう。

    次方程式 ax3+bx2+cx+d=0 の3つの解をα、β、γとします。
    この3次方程式は以下のように表すこともできます。
    a(x-α)(x-β)(x-γ)=0
    x3の係数がaですので、( )の外側にaを置くことで係数の辻褄を合わせています。
    これを展開しましょう。
    a(x-α)(x2-γx-βx+βγ)
    =a(x3-γx2-βx2+βγx-αx2+γαx+αβx-αβγ)
    ax3-aγx2-aβx2+aβγx-aαx2+aγαx+aαβx-aαβγ
    xについて降べきの順に整理しましょう。
    =ax3-a(α+β+γ)x2+a(αβ+βγ+γα)x-aαβγ

    これが、一番上の ax3+bx2+cx+d=0 と同じ方程式なのですから、それぞれの係数を比較して、
    -a(α+β+γ)=b すなわち、α+β+γ=-b/a
    a(αβ+βγ+γα)=c すなわち、αβ+βγ+γα=c/a
    -aαβγ=d すなわち、αβγ=-d/a

    これが、3次方程式の解と係数の関係です。

    さて、これを利用すると、与えられた3次方程式は、x3-x2+2x-3=0 ですから、
    α+β+γ=1
    αβ+βγ+γα=2
    αβγ=3
    となります。
    これらを用いて、以下の3つの数を解に持つ新しい3次方程式を作るのです。

    (1)2α、2β、2γ
    x3の係数はとりあえず1としておきましょう。
    そうすると、この3次方程式は、
    x3-(2α+2β+2γ)x2+(4αβ+4βγ+4γα)x-8αβγ=0 となります。

    x2の係数を求めましょう。
    2α+2β+2γ
    =2(α+β+γ)
    =2・1
    =2
    よって、x2の係数は-2です。

    次に、xの係数を求めましょう。
    4αβ+4βγ+4γα
    =4(αβ+βγ+γα)
    =4・2
    =8

    に、定数項を求めましょう。
    -8αβγ
    =-8・3
    =-24

    よって、求める3次方程式は、x3-2x2+8x-24=0 です。

    (2)αβ , βγ , γα
    この3つを解にもつ3次方程式の1つは、
    x3-(αβ+βγ+γα)x2+(αβ・βγ+βγ・γα+γα・αβ)x-αβ・βγ・γα=0 です。

    x2の係数を求めましょう。
    αβ+βγ+γα=2
    よって、x2の係数は-2です。

    次にxの係数を求めましょう。
    αβ・βγ+βγ・γα+γα・αβ
    =αβγ(β+γ+α)
    =αβγ(α+β+γ)
    =3・1
    =3

    定数項を求めましょう。
    -αβ・βγ・γα
    =-α2β2γ2
    =-(αβγ)2
    =-32
    =-9
    よって、求める方程式は、x3-2x2+3x-9=0 です。

    (3)α+β , β+γ , γ+α
    この3つを解にもつ3次方程式の1つは、
    x3-(α+β+β+γ+γ+α)x2+{(α+β)(β+γ)+(β+γ)(γ+α)+(γ+α)(α+β)}x-(α+β)(β+γ)(γ+α)=0 です。

    x2の係数を求めましょう。
    α+β+β+γ+γ+α
    =2α+2β+2γ
    =2(α+β+γ)
    =2・1
    =2
    よって、x2の係数は-2です。

    次にxの係数を求めましょう。
    (α+β)(β+γ)+(β+γ)(γ+α)+(γ+α)(α+β)
    これをこのまま展開すると、かなり複雑なことになります。
    ここでちょっと工夫します。
    α+β+γ=1 ですから、
    α+β=1-γ
    β+γ=1-α
    γ+α=1-β
    これらを代入します。
    (1-γ)(1-α)+(1-α)(1-β)+(1-β)(1-γ)
    =1-α-γ+γα+1-β-α+αβ+1-γ-β+βγ
    =-2α-2β-2γ+αβ+βγ+γα+3
    =-2(α+β+γ)+(αβ+βγ+γα)+3
    =-2・1+2+3
    =3

    次に定数項を求めます。
    -(α+β)(β+γ)(γ+α)
    =-(1-γ)(1-α)(1-β)
    =-(1-γ)(1-β-α+αβ)
    =-(1-β-α+αβ-γ+βγ+γα-αβγ)
    =-1+β+α-αβ+γ-βγ-γα+αβγ
    =-1+(α+β+γ)-(αβ+βγ+γα)+αβγ
    =-1+1-2+3
    =1
    よって、求める方程式は、x3-2x2+3x+1=0 です。

    (4)α2 , β2 , γ2
    この3つを解に持つ3次方程式の1つは、
    x3-(α2+β2+γ2)x2+(α2β2+β2γ2+γ2α2)x-α2β2γ2=0 です。

    x2の係数を求めましょう。
    α2+β2+γ2
    =(α+β+γ)2-2αβ-2βγ-2γα
    =(α+β+γ)2-2(αβ+βγ+γα)
    =12-2・2
    =1-4
    =-3
    よってx2の係数は3。

    xの係数を求めましょう。
    α2β2+β2γ2+γ2α2
    =(αβ+βγ+γα)2-2αβ・βγ-2βγ・γα-2γα・αβ
    =(αβ+βγ+γα)2-2αβγ(α+β+γ)
    =22-2・3・1
    =4-6
    =-2

    定数項を求めましょう。
    -α2β2γ2
    =-(αβγ)2
    =-32
    =-9
    よって、求める方程式は、x3+3x2-2x-9=0 です。

    さて、長かった「式と証明」の章も終わり、次回からは、新章「図形と方程式」に入ります。
    ◎日時  6月23日
    (土)10:00~11:30
    ◎内容  数Ⅱ「図形と方程式」に入ります。p.42例題1の解説から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかLINEに、ご予約をお願いいたします。



      


  • Posted by セギ at 14:49Comments(0)大人のための講座