たまりば

  地域と私・始めの一歩塾 地域と私・始めの一歩塾  三鷹市 三鷹市

2017年11月16日

冬期講習のお知らせ 2017年度


2017年度冬期講習のご案内です。
詳細は、11月末の授業時に書面をお渡しいたします。
お申込み受付は、12月1日(金)からとなります。
メールまたは申込書でお申込みください。
なお、この期間、通常授業はありませんので、いつもの時間帯の授業を希望される方も改めてお申込みください。
今回も、外部生の受講は承っておりません。
大変申し訳ありません。
以下は、冬期講習募集要項です。

◎期日
12月25日(月)~12月30日(土) 
1月4日(木)~1月7日(日)
なお、12月23日(土)は、祝日休校とさせていただきます。
1月8日(月)は、祝日ですが、平常授業となります。

◎時間帯
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30

◎費用
1コマ90分4,000円×受講回数

◎指導科目
小学生 一般算数・受験算数・英語
中学生 数学・英語
高校生 数学・英語

◎空きコマ状況 12月1日現在
12月25日(月)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
12月26日(火)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
12月27日(水)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
12月28日(木)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
12月29日(金)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
12月30日(土)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
1月4日(木)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
1月5日(金)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
1月6日(土)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30
1月7日(日)
10:00~11:30 , 11:40~13:10 , 18:20~19:50 , 20:00~21:30

  


  • Posted by セギ at 12:40Comments(0)大人のための講座

    2017年11月15日

    11月25日(土)、大人のための数学教室を開きます。


    11月11日(土)、大人のための数学教室を開きました。
    「複素数」の学習、今回は2回目です。
    今回は、いよいよ2次方程式の解に関する問題から。

    問題 次の2次方程式を解け。
    6x2-2x+1=0

    因数分解できないので、解の公式を使って解きます。
    xの係数が偶数なので、2本目の解の公式が有効ですね。
    x=1±√1-6
     =1±√-5
     =1±√5 i

    虚数単位を使うと、このように、全ての2次方程式に解が存在します。

    問題 次の方程式の実数解を求めよ。
    (2+i)x2+(3+i)x-2(1+i)=0

    これは、係数が虚数ですね。
    このまま強引に解の公式を利用する方法もあるのですが、まだ学習していない内容なので、ここはシンプルに、実部と虚部に分けて考えると楽に解けます。

    (2+i)x2+(3+i)x-2(1+i)=0
    2x2+ix2+3x+ix-2-2i=0
    (2x2+3x-2)+(x2+x-2)i=0
    ここで、xは実数なので、2x2+3x-2、x2+x-2は、それぞれ実数です。
    虚数a+bi=0 のとき、a=0、かつb=0 ですから、
    2x2+3x-2=0 かつ x2+x-2=0 
    となります。
    ですから、これを連立方程式としてその解を求めれば良いですね。
    2x2+3x-2=0
    (x+2)(2x-1)=0
    x=-2、1/2・・・①
    x2+x-2=0
    (x+2)(x-1)=0
    x=-2、1・・・②
    ①かつ②が解となるので、
    x=-2


    xを基準にまとめるのか、iを基準にまとめるのか、途中でよくわからなくなることもあるようですが、今は実部と虚部に分けて整理しようしているので、iの有無で分けていくだけです。

    ここらへんになると、やっていること自体は特に難しくない計算問題なのですが、気持ちで負けてしまう高校生が多く、精神的に支えていくことが私の仕事のかなりの部分を占めるようになります。
    数学が嫌いな子の多くは、中学の数学もそんなに身についているわけではありません。
    「中学の数学くらいわかりますよっ」
    と主張するのですが、2次方程式の解の公式をスラスラ活用できるかというと、それはかなり怪しかったりします。
    「公式くらい、わかってますよっ。でも、僕は、引き算が苦手なんですよっ」
    と言われて、言葉を失ったこともあります。
    ・・・・そうか。
    じゃあ、ゆっくりやろう。
    そう声をかけても良いのですが、そんな優しさはむしろ相手を傷つけてしまいそうでした。
    何より本人が、自分の言った言葉に自分で傷ついて、涙目になっていたのです。

    問題 次の2次方程式の解を判別せよ。
    1/3x2-1/2x+1/5=0

    解の判別に関する問題は、数Ⅰ「2次関数」の章で学習済みです。
    ただし、その頃は虚数解というものはなく、「実数解なし」という判別をしていました。
    そこを改めていくだけですね。

    解を判別するには、判別式を用いるのでした。
    2次方程式 ax2+bx+c=0 のとき、
    解の公式は、x=(-b±√b2-4ac)/2a です。
    この√ の部分がもし0ならば、解は x=-b/2a の1つだけとなります。
    これがすなわち重解です。
    √ の中身が正の数ならば、異なる2つ実数解が求められますね。
    このように、√ の中身で解の個数を判別できるので、√ の中身の部分を「判別式」と言うのでした。
    すなわち、判別式D=b2-4ac
    また、xの係数が偶数のときの解の公式の√ の中身を用いることも可能です。
    判別式D/4=-b'2-ac
    となります。

    まとめますと、
    D>0 のとき、異なる2つの実数解
    D=0 のとき、重解
    D<0 のとき、異なる2つの虚数解
    今後は、このように判別していくことになります。

    さて、上の問題は、
    1/3x2-1/2x+1/5=0
    という見た目では計算しにくいので、係数が整数になるように整理しましょう。
    方程式ですから、両辺を何倍かしても、関係は変わらないのでした。
    3と2と5の最小公倍数は30ですから、両辺を30倍すると、分母を払うことができます。
    10x2-15x+6=0
    よって、
    判別式D=152-4・10・6=225-240=-15<0
    よって、解は 異なる2つの虚数解です。

    しかし、単純に解を判別するだけでは、退屈ですね。
    そろそろ少し応用的なものを解きたくなります。
    例えば、こんな問題です。

    問題 2次方程式 x2+(k+1)x+k+2=0 が異なる2つの虚数解をもつようなkの値の範囲を定めよ。

    判別式を使うんだなあということはピンとくると思います。
    使ってみましょう。
    D=(k+1)2-4・1(k+2)
     =k2+2k+1-4k-8
     =k2-2k-7
    異なる2つの虚数解をもつのですから、D<0 です。
    よって、
    k2-2k-7<0
    これは2次不等式です。
    まず2次方程式に直して計算します。
    k2-2k-7=0
    解の公式を用いて、
    =1±√1+7
     =1±2√2
    よって、上の2次不等式の解は、
    1-2√2<k<1+2√2
    これが最終解答です。

    途中まではわかっても、「2次不等式」のところで詰まってしまう高校生は多いです。
    数Ⅰの内容があまり身についていない高校生は、この2次不等式の解き方をもう忘れてしまっているのです。
    そもそも、その前の段階の「判別式」を数Ⅰで学習したことすら曖昧になっている子もいます。
    学校では、数Ⅰでやった内容はざっと復習するだけです。
    それだって随分親切な授業でしょう。
    進学校なら「これは数Ⅰでやったな?」と確認をとるだけで終わる可能性もあります。
    しかし、完全に忘れてしまっている子にとっては、せっかくやってくれる「ざっと復習」も、その授業スピードでは、速すぎて理解できないようです。
    数Ⅱで大きく崩れ、数学の授業についていけなくなる子が多い原因の1つは、このように、数Ⅰの内容が身についていないことにあると思います。

    もっとも、高校2年の秋ともなりますと、数学が苦手な生徒の限界への配慮もあります。
    授業スピードはゆるめないものの、定期テストは易しくなる高校が多いです。
    数学の単位が取れないと、卒業できないですから。
    進学校なのに計算ドリルみたいなテストだったりします。
    そうしたテストをつくづくと眺め、結局数学の最終学年でこんなテストになるのなら、中等部のときにあんなに異様な分量と難度のテストで生徒を苦しめて数学嫌いにさせなければよいのに、と嘆息することもあります。
    公立中学から普通の都立高校に進学していたら、この子も、センター試験くらいは対応できる数学力がついたのではないかと、つい思ってしまうのです。
    どの進路が子どもを伸ばすかは、1人1人違うので、難しいです。

    おっと、話が随分それました。
    次不等式の話でした。
    詳しくは、このブログの前のページに戻ってください。
    2次不等式の基本を説明してあるページがあります。

    さて、次回の大人のための数学教室のお知らせです。
    ◎日時  11月25日(土)10:00~11:30
    ◎内容  数Ⅱ「複素数」を続けます。p.25の問題16までが宿題です。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。




      


  • Posted by セギ at 13:53Comments(0)大人のための講座

    2017年10月30日

    11月11日(土)、大人のための数学教室を開きます。

    r

    2017年10月28日(土)、大人のための数学教室を開きました。
    今回は、いよいよ「複素数」の学習の始まりです。

    その前に、「2次方程式」に話を戻して考えてみましょう。
    例 x2+2x+5=0 を解きなさい。

    解いてみます。
    因数分解はできないので、解の公式を使いましょう。
    x=-1±√1-5
     =-1±√-4

    √の中が負の数になってしまいました。( 一一)
    2乗して負の数になる数なんてありません。
    だから、この2次方程式は、「解なし」となります。

    これが、今までの解き方でした。

    実数の範囲では、これで仕方ないのですが、しかし「解なし」というのは少し残念な感じがあります。
    解のない方程式があるなんて、美しくないな。
    これの解があることにしたらどうでしょうか?
    だって、少なくとも数字の上では書き表すことができるのですから。
    これが、複素数の最もわかりやすい出発点です。
    ピラミッドを作っていた時代から、その数はあるのではないかと問いかけられては否定されてきました。
    複素数の歴史を紐解くと、デカルト、オイラー、ガウスといったビッグ・ネームが次々と登場します。
    興味がある方は検索して調べてみてもよいかもしれませんが、複素数を知るのが初めての状態ですと異次元の数学世界が広がっていますので、あまりお勧めできません。
    物凄くかいつまんで説明しますと、実数というのは、1本の数直線上のどこかに存在する点です。
    有理数も無理数も、1本の数直線上に存在します。
    しかし、虚数は、実数の数直線上には存在しません。
    では、どこに存在するのか?
    実数の数直線を含む平面上に存在します。
    その平面が、複素数平面です。
    この瞬間に、数は、1次元から2次元に拡張されたのです。
    複素数は「2元数」ともいいます。
    でも、このお話が始まるのは、まだまだはるか先。


    では、複素数の定義を見てみましょう。
    まずは虚数単位から。

    2乗すると-1になる数を i とし、虚数単位と呼ぶ。
    すなわち、 i2=-1
    また、a>0のとき、
    √-a=√a i , -√-a=-√a i とする。

    そして、複素数の定義。

    a+bi (ただし、a、bは実数。iは虚数単位)
    の形で表される数を複素数といい、aを実部、bを虚部という。
    b=0のとき、すなわちa+0・i=aで、実数aを表す。
    b‡0のとき、すなわち実数でない複素数を虚数という。
    また、a=0のとき、すなわち0+bi=bi を純虚数という。

    これまで、数の集合は実数の輪を最大のものとして閉じていました。
    ベン図にするとわかりやすいです。
    まず自然数の集合がありました。
    1、2、3、・・・・といった正の整数です。
    それを含んで、整数の集合がありました。
    負の整数や0が自然数の外側に加わったひと回り大きな輪ですね。
    さらにそれを含んで有理数の集合がありました。
    整数で表すことができない小数や分数が外側に加わったひと回り大きな輪です。
    さらにその外側に実数の輪があります。
    実数の輪の内側で、有理数の輪の外側に位置するのが無理数です。
    無理数は、有理数ではない数。
    すなわち分数で現すことができない数です。
    円周率や√2などが無理数でした。
    有理数と無理数とをあわせて、実数と呼びました。
    実数の大きな集合の輪。
    今、その周りに複素数の大きな輪が描かれました。
    実数は、複素数の一部です。

    さて、ここまで理解できれば、あとは計算です。
    複素数の計算ルールは、i2=-1 さえ守れば、あとは実数のルール、特に文字式・方程式のルールに似ていますので、大きな抵抗はないと思います。
    実部は実部同士、虚部は虚部同士で足し算できます。
    実部×虚部は可能です。
    虚部×虚部も可能です。

    (a+bi)+(c+di)=(a+c)+(b+d)i
    (a+bi)(c+di)=ac+adi+bci+bdi2
    a、b、c、dは実数。

    例 (3-5i)(7+2i) を計算せよ。
    =21+6i-35i-10i2
    =21-29i-10・(-1)
    =21-29i+10
    =31-29i

    慣れてくれば計算過程は適宜省略し、与式の次は答えでも構いませんが、符号ミスを起こしやすい人は丁寧に解いていったほうが無難でしょう。

    例 x=(-1+√5i)/2 、 y=(-1-√5i)/2 のとき、x3+y3+x2y+xy2 の値を求めよ。

    これは、様ざまな単元の計算問題で繰り返し出てきた、対称式に関する問題です。
    逐一代入しても答えは出るのですが、面倒で時間がかかります。
    まず、xとyの和と積を求めるのが定石でした。

    x+y=(-1+√5i-1-√5i)/2
       =-2/2
       =-1
    xy=(-1+√5i)(-1-√5i)/4
      =(1-5i2)/4
      =(1+5)/4
      =6/4
      =3/2
    よって、
    x3+y3+x2y+xy2
    =(x+y)3-3xy(x+y)+x2y+xy2
    =(x+y)3-3xy(x+y)+xy(x+y)
    =(x+y)3-2xy(x+y)
    =(-1)3-2・(-1)・3/2
    =-1+3
    =2
    これは、対称式の計算のときによく使う、
    x3+y3=(x+y)3-3xy(x+y)
    という公式を利用した解き方です。

    あるいは、先に、
    x2+y2=(x+y)2-2xy=(-1)2-2・/32=1-3=-2
    を求めているのなら、
    x3+y3+x2y+xy2
    =(x+y)(x2-xy+y2)+x2y+xy2
    =(x+y)(x2-xy+y2)+xy(x+y)
    =(x+y)(x2-xy+y2+xy)
    =(x+y)(x2+y2)
    =-1・(-2)
    =2
    という求め方も可能です。
    これも公式を利用しています。
    x3+y3=(x+y)(x2-xy+y2)
    という公式です。
    新しい単元に入っても、既習の公式を覚えていないと実際の問題は解けません。
    解答・解説を読んでも、何でそういう変形をしているのか、意味がわかりません。
    とにかく、公式は全部頭に入れておきましょう。

    ところで、-1+√5i と-1-√5i は、和や積で虚数部分が消えて、その後の計算が随分楽になりましたね。
    虚部が異符号なのが良かったですね。
    こういう数を「互いに共役な複素数」と言います。
    「a+bi と a-bi を互いに共役な複素数という」というのが定義です。


    問題 -27の平方根を求めよ。
    -27の平方根は、±√-27 です。
    ±√-27 =±√27i=±3√3i

    問題 √-24・√-18 を計算せよ。
    √-24・√-18
    =√24i・√18i
    =2√6・2√3・i2
    =2・2・3√2・(-1)
    =-12√2

    これを
    √-24・√-18
    =√-24・(-18)
    =√24・18
    =12√2
    としてはいけないのです。
    a<0、b<0 のとき、√a・√b=√ab ではありません。
    それは、実数のときだけのルールで、虚数ではそれはできません。
    必ず、最初に i を使って書き直してから計算していきます。
    なぜできないか
    だって、上のように計算していいのなら、
    -12√2=12√2 となってしまい、矛盾します。
    これは背理法で証明できることだと推測できますね。

    さて、次回の数学教室のお知らせです。

    ◎日時  11月11日(土)10:00~11:30
    ◎内容  数Ⅱ「複素数」を続けます。p.22の問題8までが宿題です。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。









      


  • Posted by セギ at 13:26Comments(0)大人のための講座

    2017年10月25日

    セギ英数教室、生徒を募集いたします。


    セギ英数教室、生徒を募集いたします。

    現在の成績は、問いません。
    未来の秀才を求めています。
    小さな個別指導塾ですが、1人1人の成績を確実に上げることを目標に、実績を上げております。
    担当は、受験指導30年のベテラン。
    「上手な授業」というパフォーマンスではなく、受け持った生徒の成績を本当に上げることが目的の「学習トレーナー」を自認しております。
    必要な時期に必要な学習内容を提示します。

    ◎時間   1回の授業は90分。週1回です。
     今回募集いたしますのは、以下の2コマです。

     月曜日 16:40~18:10(1月からの募集となります)

     火曜日 16:40~18:10
    ◎形態   1対1の完全個別指導です。

        
    ◎指導科目 
     小学生  中高一貫校受験 算数・国語
           私立受験算数
           一般算数
            小学英語
     中学生  中高一貫校 数学
           中高一貫校 英語
           高校受験 数学
           高校受験 英語
     高校生  大学受験 数学
           大学受験 英語
           内部進学向けの数学・英語も承っております。
           英検など各種英語検定対策も承ります。

    ◎費用 
     週1回 受講で、月額20,000円
     週2回 受講で、月額36,000円
     (内訳 90分1コマ4,000円、諸経費・教材費月額4,000円)
      他に入会金を10,000円いただきます。

    ◎入会までの流れ
     まず、無料体験授業を受けてください。
     左の「お問い合わせ」ボタンからご連絡ください。

    以下の内容をご記入いただけますと、以後のやりとりがスムーズです。
    ①お子様の学校名
    ②学年
    ③性別
    ④ご希望の通塾曜日
    ⑤ご希望の体験授業日時(11月からとなります)
    ⑥希望科目
    ⑦体験授業の希望内容
    (例 「1次関数」 など)


    ◎場所   三鷹市下連雀3-33-13
            三鷹第二ビル305
           三鷹駅南口から徒歩5分。
           春の湯の斜め前のビルです。







      


  • Posted by セギ at 13:03Comments(0)大人のための講座

    2017年10月15日

    10月28日(土)、大人のための数学教室を開きます。


    今月号の『山と渓谷』は高尾山特集です。
    奥高尾のメインストリートの他、北高尾や南高尾など、山地図から読み取れるほぼ全コースを案内しています。
    周辺の山からのロングコースも。
    高尾山に初めて来た山岳ライターの記事が面白かったです。
    難しい顔で名物のお団子を食べています。( *´艸`)

    さて、10月14日(土)、大人のための数学教室を開きました。
    前回欠席された方がご出席。
    前回の演習から始め、最後の5分で、新しいところに突入しました。
    こんな問題です。

    問題 a+b=4 のとき、3a2+b2≧12 を証明せよ。

    a+b=4 という新しい種類の条件が提示されましたが、この使い方は何となくわかりますね。
    おそらく、代入して、文字を1種類に整理するのでしょう。
    a+b=4 より b=4-a 
    これを代入して、
    3a2+b2
    =3a2+(4-a)2
    =3a2+16-8a+a2
    =4a2-8a+16
    ここでいつものように平方完成してみましょう。
    =4(a2-2a)+16
    =4(a-1)2-4+16
    =4(a-1)2+12
    お?右辺と同じ12が出てきましたね。
    これで証明の方向が定まりました。
    (a-1)2≧0 より 4(a-1)2+12≧12
    等号はa=1のときですね。
    ならば、bも決定します。
    b=4-a=4-1=3
    よって、等号は、a=1、b=3のときに成立する。

    不等式の証明を学習していて、よく受ける質問に、
    「どのやり方で証明するのか、判断がつかない」
    というものがあります。
    パッと見た瞬間にこの問題はこのやり方、あの問題はあのやり方で証明する、と判断する基準は何なのか?
    それを求める高校生が多いのです。
    例えば、相加平均≧相乗平均 の定理を使うときと使わないときの違い、その基準は何なのか?

    気持ちはわかるんです。
    でも、そういうことはもっと演習しないと、基準や違いの説明を聞いてもピンとこないと思います。
    むしろ、そっちを覚えるほうが難しいです。
    とにかく試行錯誤してみることのほうを勧めます。
    「どのやりかたを使っていいのかわからないから、イライラする。解くのが苦痛だ」
    ではなく、
    「どのやりかたを使うのかわからないから、色々試してみる。それが面白い」
    だと思うんです。
    数学を楽しむ態度とはそういうものではないかなあと思うんですよ。

    小学校の算数や中学の数学は比較的良く出来たし得意だったという人が、高校数学が急に苦手になる原因の1つも、もしかしたらそれではないかと思うことがあります。
    中学の数学までなら、問題を読めばパッと解き方がわかった。
    数学とはそういうものだと思っていた。
    だから、色々考えないと解き方が見つからない高校数学が嫌いだ。
    自分には向いていないと感じる。
    そういうことなのではないかと思うのです。

    でも、色々考えるのが数学の楽しさです。
    (*^^)v

    さて、次の問題。
    問題 a>1、b>1、a+b=1 のとき、不等式 ax2+by2≧(ax+by)2 を証明せよ。

    まずは、上の問題と同様に代入してみましょうか。
    a+b=1 より b=1-a
    これを左辺-右辺 の式に代入して、
    ax2+by2-(ax+by)2
    =ax2+(1-a)y2-{ax+(1-a)y}2
    =ax2+y2-ay2-a2x2-2axy(1-a)-y2(1-a)2
    =ax2+y2-ay2-a2x2-2axy+2a2xy-y2(1-2a+a2)
    =ax2+y2-ay2-a2x2-2axy+2a2xy-y2+2ay2-a2y2

    うわあ・・・・。
    この先、やりようがあるのかもしれませんが、ちょっと迂回したくなってきました。
    これは、1回戻って考え直したほうが良さそうです。

    バラバラにしたのが良くなかったのかもしれません。
    代入前に戻って整理し直してみます。
    ax2+bx2-(ax+by)2
    =ax2+bx2-(a2x2+2axby+b2y2)
    =ax2+bx2-a2x2-2axby-b2y2
    =(a-a2)x2-2abxy+(b-b2)y2
    =a(1-a)x2-2abxy+b(1-b)y2

    ここで、あっとひらめくのです。
    a+b=1より、1-a=bですし、1-b=aです。
    この両方をそれぞれに代入します。
    =abx2-2abxy+aby2
    =ab(x2-2xy+y2)
    =ab(x-y)2≧0
    よって、ax2+bx2≧(ax+by)2
    等号は、x-y=0、すなわちx=yのとき成立する。

    そんなやり方、思いつかないよ。
    最初はそういう感想で当然だと思います。
    このテクニック、頭の引き出しに入れておきましょう。
    類題を解くときに使うかもしれません。

    さて、次回の数学教室のお知らせです。
    次回はいよいよ複素数について学習します。
    新しい数の登場ですよー。

    ◎日時  10月28日(土)10:00~11:30
    ◎内容  数Ⅱ「複素数」に入ります。p.19の問題21までが宿題です。

    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。



      


  • Posted by セギ at 15:48Comments(0)大人のための講座

    2017年10月03日

    10月14日(土)、大人のための数学教室を開きます。


    9月30日(土)、大人のための数学教室を開きました。
    今回は、「絶対値を含む不等式の証明」を学習しました。
    「絶対値」という言葉は、中学1年生の「正負の数」の最初のほうで学びます。
    数直線上での原点からの距離をその数の絶対値と呼びます。
    だから、+3も-3も絶対値は3です。
    したがって、絶対値とはその数の符号を外した数、すなわち正の数ととらえることができます。

    ここまでならシンプルな話なのですが、絶対値に文字がからむと途端にわかりにくくなるようです。
    例えば、高校数Ⅰで学習する以下の内容。

    |a|≧a
    |a|≧-a
    |a||b|=|ab|
    |a+b|2=a2+2ab+b2

    パッと見て、「そりゃそうだ。当たり前だ」と感じる子と、「え?え?何?」と焦る子とがいます。
    1つには、文字が正負の記号を含みこんでいることが理解しきれていないせいかもしれません。
    aという文字は、a≧0の可能性とa<0の可能性とがあります。
    そう説明されれば、「それは知っている。わかっている」と言うのですが、実際に問題を解くときには、わかっていないことが露呈してしまいます。
    aは正の数。
    -aが負の数。
    そういう感覚で解いてしまう子がいるのです。

    「aという文字が何なのか決まっていないのに、何で大小が言えるんですか?」
    そう質問されて、その質問がどういう意図のものかわからず、困惑したこともあります。
    「不等式の証明」の学習の始まりには、そういう疑問はもたない様子で、それなりに解いていたのです。
    しかし、絶対値を含む不等式になると、その質問が口をついて出てしまう。
    絶対値がわからないのか?
    最初から不等式がわからなかったのか?

    不等式の学習の最初に、全ての不等式が証明できるわけではなく、証明できる不等式だけを扱っているのですよと説明してあります。
    aという文字が何なのか決まっていなくても、大小が言える不等式だけを証明しているのです。
    でも、その説明をしても、その子の顔がパッと晴れることはないのです。

    おそらく、その質問は今どきの言葉で言えば「芯を食っていない」のでしょう。
    だから、私の説明も相手を納得させることがない。
    本人が質問したいことは、そのことではないのだと思います。
    では、何を問いたいのでしょう?
    わからないことの核心は、何なのでしょう?
    おそらく、わからないことの核心は、高校数学ではなく、中学の数学、あるいは小学校の算数の時代にあるのではないかと思うのですが、深すぎてなかなか届かないのが悩みです。


    ともかく、数Ⅱの実際の問題にあたってみましょう。

    問題 |a-b|≧|a|-|b| を証明せよ。

    この問題は、テキストでは、その上に例題が載っていて、それが、
    |a|+|b|≧|a+b|
    なのです。
    その解説を聞いた上で、実際に解くのがこの問題なのは、テキストの構成に若干悪意があるかもしれません。
    単純に例題の解法をなぞって解いてもダメですよ、という警告なのでしょうか。
    見た目が似ているので、同じように解いてしまう高校生は多いのですが。

    上の問題と例題とは、違うのです。
    では、何が違うのか?
    |a|+|b|≧|a+b|
    は、左辺も右辺も、正の数です。
    正の数での大小の比較ですから、それぞれ2乗して大小を比較することで単純に判断できます。
    しかし、
    |a-b|≧|a|-|b|
    は、左辺は正の数ですが、右辺は、負の数かもしれません。
    単純に2乗して大小を比較することはできません。
    ここは、場合分けして判断していかなければなりません。

    1) |a|-|b|<0 すなわち |a|<|b| のとき
    |a-b|>0、|a|-|b|<0だから、
    |a+b|>|a|-|b|

    2) |a|-|b|≧0 すなわち |a|≧|b| のとき
    (左辺)2-(右辺)2
    =|a-b|2-(|a|-|b|)2
    =a2-2ab+b2-(|a|2-2|a||b|+|b|2)
    =a2-2ab+b2-a2+2|ab|-b2
    =-2ab+2|ab|
    =2|ab|-2ab
    =2(|ab|-ab)
    ここで、|ab|-ab の正負について考えてみましょう。
    aとbが同符号あるいは0のとき、すなわち ab≧0 のとき、
    |ab|=ab となり、|ab|-ab=0 です。
    aとbが異符号のとき、すなわちab<0 のとき
     -ab>0 となり、|ab|-ab>0 です。
    よって、
    2(|ab|-ab)≧0
    ゆえに、
    |a-b|2≧(|a|-|b|)2
    したがって、
    |a-b|≧|a|-|b|
    1)、2)より、
    |a-b|≧|a|-|b|
    等号は|ab|=ab すなわち ab≧0 かつ|a|≧|b|のときに成り立つ。

    いかがでしょうか?

    さて、今回ご出席の方は、次回は欠席のご連絡を受けました。
    次回の授業は、まずは今回の内容に関して質問を受けます。


    ◎日時  10月14日(土)10:00~11:30
    ◎内容  数Ⅱ「等式・不等式の証明」を続けます。p.19の問題17までが宿題です。

    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。




      


  • Posted by セギ at 15:29Comments(0)大人のための講座

    2017年09月17日

    9月30日(土)、大人のための数学教室を開きます。


    9月16日(土)、大人のための数学教室を開きました。
    今回は、相加平均と相乗平均の話です。

    言葉がまず少し難しい印象ですね。
    相加平均は、小学生の頃からお馴染みのいわゆる「平均」です。
    n個の数の和をnで割ったものです。
    一方、相乗平均は、n個の数の積のn乗根となります。

    ところで、まだ「指数関数・対数関数」の単元を学習していませんので、この「n乗根」というのが厄介です。
    今回の学習内容では、そこまで話を拡大する必要がありませんので、2つの数に限って話を進めましょう。
    今回欠席された方は、テキストp18の14番は解かないでください。
    質問もご遠慮ください。
    いずれ「指数関数・対数関数」を学習するときに、しっかりやっていきましょう。

    2つの数に限定して説明すると、
    相加平均は、2数aとbとの和を2で割ったもの。つまり(a+b)/2。
    相乗平均は、2数aとbの積の平方根。つまり、√ab です。

    a≧0、b≧0のとき
    (a+b)/2≧√ab
    等号はa=bのとき成り立つ。

    これが、
    相加平均≧相乗平均
    定理です。

    証明もそんなに難しくありません。
    左辺-右辺をやってみましょう。
    左辺-右辺≧0 となれば、左辺≧右辺 ですね。
    (a+b)/2-√ab
    これをまず通分します。
    =(a+b-2√ab)/2
    中3で学習した因数分解の公式が使えそうです。
    =(√a2+√b2-2√ab)/2
    =(√a-√b)2/2≧0
    よって左辺≧右辺となります。
    等号は√a-√b=0、すなわち a=b のとき成り立つ。

    相加平均≧相乗平均 の定理は、分数のままだと使いにくいので、両辺を2倍して、
    a+b≧2√ab
    の形で利用することが多いです。
    では、利用してみましょう。

    問題 a≧0、b≧0とする。
    (a+1/a)(b+1/b)≧4 を証明せよ。

    左辺の( )内がそれぞれ和の形になっています。
    文字の並びからして相乗平均したら右辺のように文字が消えて数字だけが残りそうです。
    これは、相加平均≧相乗平均 の定理が使えるでしょう。

    相加平均≧相乗平均 より
    a+1/a≧2√a・1/a
    a+1/a≧2√1
    a+1/a≧2 ・・・①
    同様に、
    b+1/b≧2 ・・・②
    ①×②をすると
    (a+1/a)(b+1/b)≧4
    等号はa=1/a かつ b=1/b すなわち、a=b=1のとき成り立つ。


    見た目は似ているようでも、全ての問題で相加平均≧相乗平均を使うわけではありません。

    問題 a≧0、b≧0のとき、√2(a+b)≧√a+√b を証明せよ。

    これも、相加平均≧相乗平均 を使うのだろうかと悩む高校生がときどきいますが、試しに使ってみると、すぐに式がグチャグチャになってきて行き詰まることがわかると思います。
    あれこれ悩む前に、可能性を感じるのならやってみたら良いと思います。
    手は動かさないのに、「使えるの?使えないの?どうやって見分けるの?」と質問する高校生は多いのですが、手を動かし、試行錯誤すれば、見分けがつくようになります。
    そうなる前に説明だけ聞いて見分けようとしますと、その説明が長くしかも細かくて何を言っているのかわからないということが起こりがちです。

    さて、上の式はa≧0、b≧0ですので、左辺も右辺も正の数であることがわかっています。
    ならば、それぞれ2乗しても大小関係は変わりません。
    だから、それぞれ2乗してみましょう。
    左辺2-右辺2
    =2(a+b)-(√a+√b)2
    =2(a+b)-(a+2√ab+b)
    =2a+2b-a-2√ab-b
    =a-2√ab+b
    =(√a-√b)2≧0
    よって√2(a+b)≧√a+√b
    等号は√a-√b=0 すなわちa=b のとき成り立つ。

    今までのところを整理しますと、不等式を証明するには、左辺-右辺≧0 を示すのですが、そのためには、
    ①平方完成する
    ②相加平均≧相乗平均 を利用する
    ③全体を2乗する
    これらのうちのどのテクニックを使うかは、その問題ごとに自分で判断します。
    判断がつかないうちは試行錯誤してみましょう。
    数学の問題を解いていて一番楽しい時間は、この試行錯誤の時間だと思うのです。
    一番意味のある時間でもあると思います。

    さて、次回の数学教室のお知らせです。

    ◎日時  9月30日(土)10:00~11:30
    ◎内容  数Ⅱ「等式・不等式の証明」を続けます。p19の問題15が宿題です。

    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。



      


  • Posted by セギ at 13:03Comments(0)大人のための講座

    2017年09月04日

    9月16日(土)、大人のための数学教室を開きます。


    9月2日(土)、大人のための数学教室を開きました。
    今回もまずは「等式の証明」の続きから。

    問題 a/b=c/d のとき、(a2+c2)/(b2+d2)=ac/bd であることを証明せよ。

    前回よりも複雑になってきましたね。
    与えられた式が分数のとき、例えばaについて解いても、その結果は分数になり、しかも文字が3種類残るので、左辺=右辺を示すことは難しそうだと見通せます。
    こんなとき、別の文字kを登場させるというテクニックがあります。

    a/b=c/d=k とおく。
    すなわち、a=bk、c=dk。
    これを代入して、
    左辺=(b2k2+d2k2)/(b2+d2)
       =k2(b2+d2)/(b2+d2)
       =k2
    右辺=bk・dk/bd
       =k2
    よって、左辺=右辺

    このテクニック、とても便利ですので、覚えておきたいですね。

    問題 x/3=y/4=z/2‡0 のとき、(x-y)2/(y2+z2) の値を求めよ。
    これも、与えられた式が分数ですね。
    ということで、これもkを使ってみましょう。
    x/3=y/4=z/2=k とおくと、
    x=3k、y=4k、z=2k。
    これを代入して、
    与式=(3k-4k)2/(16k2+4k2)
       =k2/20k2
       =1/20

    わあ、約分でkが消えて、式の値が出てきましたー。(^^♪
    これは、やはり便利ですね。
    こういうテクニックは、忘れた頃にまた別の単元で使うことになりますので、決して忘れないようにお願いいたします。

    本日、学習はスラスラ進み、次の「不等式の証明」に入りました。
    不等式は、左辺と右辺がお互い文字式のままでは、大小なんてわからないのではないかと思いますよね。
    文字の値によって大小なんて違ってくるんじゃないの?
    そんなものをどうしたら証明できるのでしょう。
    勿論、個々の文字の値が何であるかによって大小が異なる場合がほとんどです。
    証明できるものはごく一部です。
    ただ、練習するのは、証明できるものだけなのです。
    では、どんな場合に証明できるのか?

    左辺-右辺≧0
    を証明できれば、
    左辺≧右辺 ですよね。
    そして、左辺-右辺を何かの2乗の形にできるなら、それは0以上の数でしょう。
    実数の場合、2乗すれば必ず0以上の数になりますから。
    不等式は、これを用いて証明します。

    問題 x4+y4≧x3y+xy3 を証明せよ。

    左辺-右辺
    =(x4+y4)-(x3y+xy3)
    =x4+y4-x3y-xy3
    項の順番を変えてみましょう。
    =x4-x3y-xy3+y4
    ここで、共通因数で括ります。
    =x3(x-y)-y3(x-y)
    ( )の中身が共通因数となりましたので、さらに括れますね。
    =(x-y)(x3-y3)
    後半の( )の中身は、さらに因数分解できますね。
    3乗の公式を使います。
    =(x-y)(x-y)(x2+xy+y2)
    =(x-y)2(x2+xy+y2)

    さて、ここまで因数分解して、前半の(x-y)2は、2乗ですから、必ず0以上になりますね。
    後半の x2+xy+y2 は、どうでしょうか。
    これだけ、さらに平方完成してみましょう。
    平方完成を覚えていますか?
    数Ⅰの「2次関数」でやりましたね。
    頂点の座標を求めるために式を変形する方法です。
    xについての文字式と考えて平方完成しますので、yはxの係数として扱います。
    x2+yx+y2
    =(x+1/2y)2-1/4y2+y2
    =(x+1/2y)2+3/4y2≧0
    この式は、前半も後半も2乗の形になっています。
    だから、どちらも0以上の数だとわかります。
    0以上の数同士を足しても、0以上です。
    よって、この式は、0以上です。

    元の式に戻りましょう。
    (x-y)2(x2+xy+y2)
    これは、0以上の数と0以上の数の積であることがわかります。
    よって、元の式も0以上です。
    左辺-右辺≧0
    左辺≧右辺

    さて、≧のように、等号が含まれている不等式の場合、どんなときに等号が成り立つかを書き添えるのが慣例です。
    (x-y)2{(x+1/2y)2+3/4y2}=0
    は、どんなときに成立するでしょうか。
    前半の( )または後半の{ }の中身が0ならば、積は0ですね。
    よって、x-y=0 または、x+1/2y=0かつy=0
    となります。
    これを整理すると、
    前半は、x=y ですね。
    「または」の後のほうは、y=0をx+1/2y=0に代入すると、
    x=0となり、よってx=y=0です。
    これは、前半のx=yの1例と考えることができます。
    よって、等号は、x=y のときに成り立ちます。

    以上、今回はスラスラと2回分は進みましたので、欠席された方は、ここまで自習をお願いいたします。
    次回は、相加平均≧相乗平均 の話をしましょう。

    次回の数学教室のお知らせです。
    ◎日時  9月16日(土)10:00~11:30
    ◎内容  数Ⅱ「等式・不等式の証明」を続けます。p18から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。



      


  • Posted by セギ at 14:37Comments(0)大人のための講座

    2017年08月19日

    9月2日(土)、大人のための数学教室を開きます。



    8月19日(土)の大人のための数学教室は、全員欠席で休講となりました。
    お盆休みから数日離れているから大丈夫かなと思いましたが、やはり皆さま忙しい時期のようです。

    そんなわけで、等式の証明の続きは次回やります。

    今日のこのブログは、この夏、生徒たちの計算する様子を見ていて感じたことを。


    算数・数学が苦手な子の多くに共通しているミスがあります。
    互いに伝達しあっているわけではないのに、同じところを同じように間違えます。
    そして、一度思い違いをするとその定着度は不可解なほど強く、なかなか正しく直りません。

    例 1/3(9x-2)+1/2(8x-4)

    文字式の計算ですね。
    そんなに難しくないはずなのですが、間違える子は、ほぼ同じようにこう間違えてしまいます。

    =3x-2+4x-4

    何をどう間違えているのか、わかりますよね?
    前半で言えば、1/3と( )の中の9xだけをかけて、-2はそのままにしてしまうのです。
    1/3が( )内の各項に平等にかかっていくことが理解できていない様子です。
    後半も同様です。


    また別の問題。
    例 2(3x-4)/5-3(2x+7)/2

    これは、分母が異なるので、通分が必要です。
    そこでは、こういうミスがあります。

    =4(6x-8)/10-15(10x+35)/10

    え?
    これは、何をしたの?

    前半の分母の5を10にするために、分子にも×2をします。
    そのとき、( )の外の2にも、( )の中にも、全て×2をしてしまったようです。
    後半も同様に、逐一×5をした様子です。

    何でさっきの問題では、( )の中の片方しかかけないという不平等なことをやっておきながら、今度は必要もないところに逐一×2をするのかなー。
    ( 一一)

    通分ではこの形のミスはしない子も、例えば方程式の「割合」に関する文章題で作った式を整理するときに、同じ性質のミスをしがちです。
    (x-1/10)(x-2/10)=7
    これを整理するとき、
    (10x-1)(10x-2)=70
    としてしまうミスは、数学の成績が「4」の子でも見られるミスです。
    右辺は700だよと教えても、きょとんとしてしまいます。
    何でそうなるのか、わからない様子なのです。
    説明すると、そのときは理解した表情にはなるのですが、ひと月もすれば、また同じミスをしてしまいます。

    計算上そんなことはあり得ない、ということを感覚的に把握していないのかもしれません。
    かけ算でつながっている部分は1つのまとまり、という感覚がないのだと思います。
    知識としてこれはしてもいい、これはしてはいけないと1つ1つ覚えるしかなく、覚えきれずに失敗するのでしょうか。

    何かが理解できていないのです。
    しかし、それは言葉で説明してもなかなか伝わりません。
    わかった顔はしますが、忘れた頃にまた同じミスが復活します。

    数に対する正しい感覚がどうしてその子の中に作られないのか。
    逆に、上のようなミスは決してしない子の、数に対する感覚は、どのように養われたものなのか。
    小学生時代に何をすれば、上のようなミスはしない子になるのか。
    難しい課題です。

    さて、次回の数学教室のお知らせです。

    ◎日時  9月2日(土)10:00~11:30
    ◎内容  数Ⅱ「等式・不等式の証明」を続けます。p16から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。









      


  • Posted by セギ at 15:07Comments(0)大人のための講座

    2017年07月29日

    8月19日(土)、大人のための数学教室を開きます。



    画像はヤマオダマキ。三ツ峠で撮影しました。
    7月29日(土)、大人のための数学教室を開きました。
    本日の学習内容は、「等式の証明」です。
    「等式の証明」は、高校生には不評です。
    「何のためにこんなことを証明しなければならないのかわからない」
    と言うのです。
    何のためにと言われても、これは基礎訓練ですから、証明する内容に大した意味はありません。
    この等式が何かを表しているわけではありません。
    このやり方を利用して、大切な公式や定理も証明できますから、まずその基礎訓練をしましょうということです。
    やってみましょう。

    問題 (a2-b2)(c2-d2)=(ac+bd)2-(ad+bc)2  を証明せよ。

    等式の証明は色々な方法があります。
    ①左辺を変形し、右辺と等しいとを示す。
    ②右辺を変形し、左辺と等しいことを示す。
    ③左辺、右辺をそれぞれ変形し、左辺=右辺であることを示す。
    ④左辺-右辺=0であることを示す。
    ⑤左辺÷右辺=1であることを示す。

    問題によってどの方法で示すのが楽であるかを判断します。
    上の問題は単純な構造のものですので、③のやり方で大丈夫そうですね。
    ④や⑤で解くことも勿論可能ですが、これらはもっと発展的な問題のときに利用する方法ですので、無理して使う必要はないでしょう。

    では、解いてみましょう。
    左辺=(a2-b2)(c2-d2)
       =a2c2-a2d2-b2c2+b2d2
    右辺=(ac+bd)2-(ad+bc)2
       =a2c2+2abcd+b2d2-(a2d2+2abcd+b2c2)
       =a2c2+2abcd+b2d2-a2d2-2abcd-b2c2
       =a2c2-a2d2-b2c2+b2d2
    よって左辺=右辺となり、等式が成り立つ。

    考え方は難しくないので、後は計算力となります。
    高校2年ともなりますと、計算力は個人個人で大きな隔たりがあります。
    勿論、高校1年生までの数学を完璧にマスターしている子もいます。
    高校受験のための勉強は一所懸命やったので中学数学はマスターしているけれど、高校の数Ⅰ・数Aの内容が定着していない子もいます。
    中高一貫校の子や、高校受験の勉強をしてもよく理解できなかった子の中には、中学数学の内容が定着していない子もいます。

    (a+b)2=a2+2ab+b2
    という乗法公式を覚えていないため、上手く展開できない子。
    (ab)2=a2b2
    などの指数法則を理解していないため、上手く展開できない子。

    高校数Ⅱで新しく教わる内容が理解できないわけではないのです。
    でも、そのはるか手前でつまずいていたり、基本となる知識が抜けている子は多いです。
    そのため、自分で問題を解こうとすると正答を出すことができません。
    こうなると独学は難しくなります。
    生徒がどのレベルでつまずいているか理解して、そこから説明する個別指導が効果を発揮するところです。

    次回は、もう少し発展的な等式の証明をやってみましょう。
    お盆休みをはさみますので、3週間後になりますから、ご注意ください。

    ◎日時  8月19日(土)10:00~11:30
    ◎内容  数Ⅱ「等式・不等式の証明」を続けます。p16から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。











      


  • Posted by セギ at 14:53Comments(0)大人のための講座

    2017年07月16日

    7月29日(土)、大人のための数学教室を開きます。


    7月15日(土)、大人のための数学教室を開きました。
    分数式の乗除、繁分数の計算を終えて、「恒等式」に進みました。
    恒等式とは、その名の通り、常に成り立つ式のことです。
    「xについての恒等式」でしたら、xにどのような値を入れても常に成り立つことを意味します。

    問題
    次の整式がxについての恒等式となるように、定数a、b、cの値を定めよ。
    x2+2x+3=a(x+1)(x-1)+b(x-1)+c

    誤解しやすいところですが、問題文中にある「整式」とは、「係数やxの値が整数の式」という意味ではありません。
    分母にxがある「分数式」などではないという意味です。
    xの係数やxの値は整数である必要はありません。
    具体的には、単項式と多項式とをあわせて「整式」と呼びます。

    さて、この問題の解き方は2つあり、それぞれ「係数比較法」「数値代入法」という名前がついています。
    まずは係数比較法から。
    とりあえず、右辺を展開します。
    a(x+1)(x-1)+b(x-1)+c
    =a(x2-1)+bx-b+c
    =aX2-a+bx-b+c
    これをxについて降べきの順に整理します。
    =ax2+bx+(-a-b+c)
    すなわち、
    x2+2x+3=aX2+bx+(-a-b+c)
    この左辺と右辺の係数を比較します。
    これがxについての恒等式なのですから、左辺・右辺それぞれの係数や定数項は等しいでしょう。
    よって、
    1=a
    2=b
    3=-a-b+c
    の3本の式が得られます。
    わからない文字が3つあるとき、式が3本あればその文字の値を求めることができます。
    連立方程式ですね。
    a=1、b=2を-a-b+c=3に代入して、
    -1-2+c=3
    -3+c=3
    c=6
    よって、a=1、b=2、c=6です。

    もう1つの解き方が「数値代入法」。
    xに適当な値を代入して、式を解いていく方法です。
    やはり、わからない文字が3つあるので、式は3本用意します。
    xにどんな値を代入した式でも良いのですが、どうせなら計算しやすいほうがいいですね。
    x2+2x+3=a(x+1)(x-1)+b(x-1)+c
    という式から、x=0、1、-1の値を代入すると判断します。

    どういう基準で、それらの値を代入すると判断するのでしょうか?
    x=0ならば、左辺の2つの項が0になり、計算が楽だからです。
    同様に、x=1ならば、右辺の2つの項が0になり、その後の計算が楽になります。
    x=-1ならば、右辺の第1項が0になり、その後の計算が少し楽です。

    では、やってみましょう。
    x=0を代入すると、
    0+0+3=a・1・(-1)+b・(-1)+c
    すなわち、
    -a-b+c=3 ・・・・①

    x=1を代入すると、
    1+2+3=a・2・0+b・0+c
    すなわち、
    c=6 ・・・・②

    x=-1を代入すると、
    1-2+3=a・0・(-2)+b・(-2)+c 
    すなわち、
    -2b+c=2 ・・・・③

    0には何をかけても0になるので、消えてしまう項が多いのですね。
    だから、xそのものが0になる値や、(x+1)や(x-1)が0になる値を用いています。
    この3本を連立方程式として解いていきます。
    ②を③に代入しして、
    -2b+6=2
    -2b=-4
    b=2 ・・・④
    ②、④を①に代入して、
    -a-2+6=3
    -a+4=3
    -a=-1
    a=1

    先程の係数比較法と同じ値が出ましたが、数値代入法の場合、このまま解答してしまうわけにはいきません。
    なぜなら、x=0、1、-1のときにそれが成立することしか今のところわかっていないからです。
    xがいくつかの値に対して成り立つようにa、b、cの値を決定したに過ぎません。
    これは、xについての恒等式であるための必要条件であって、十分条件ではありません。
    そこで、a=1、b=2、c=6をもとの式に代入して、本当に大丈夫なのか確認します。
    すなわち、「十分性を示す」のです。

    a=1、b=2、c=6を与式に代入すると、
    右辺=1・(x+1)(x-1)+2(x-1)+6
       =x2-1+2x-2+6
       =x2+2x+3
    よって左辺=右辺 となり、与式は恒等式となる。
    ゆえに、a=1、b=2、c=6

    数値代入法は、このように最終確認をしなければならないことが答案的には難しく、しかもわかりにくいかもしれません。
    「必要条件」「十分条件」という言葉の意味も忘れかけていた頃に突然これが出てくるので、戸惑う高校生は多いです。
    必要条件と十分条件は、数Ⅰの最初の頃に学習した内容です。

    pならばqであるとき、pをqであるための十分条件、qをpであるための必要条件という。

    上の問題でいうならば、「a=1、b=2、c=6ならば、与式はxがどのような値でも成立する」
    ということを示さなければなりません。
    「x=0、1、-1ならば、a=1、b=2、c=6である」
    では、矢印の方向が逆ですね。
    必要条件であるというのはそういう意味です。
    ですから、逆方向の矢印でも大丈夫であること、すなわち「十分性」を示すことが重要です。

    難しいのはそこだけだと思うのですが、実際の計算で苦労する高校生もいます。
    3元1次連立方程式を見ると、軽いパニックが起こり、何をどこに代入していいのかわからなくなる子は案外多いのです。
    堂々巡りになるだけの、やらなくて良い式の変形ばかりやってしまい、必要なことをやりません。
    見ていて不可解なほど、混乱してしまうのです。
    中学2年の「連立方程式」の学習のとき、「加減法」しかやろうとせず、
    「代入法は嫌い」
    と言って使わない子がいますが、そういうことが尾を引いている可能性もあります。
    代入法が嫌いというのは、代入法の理屈が上手く理解できず、加減法のように手順を把握しやすいほうに逃げているのかもしれません。
    型通りの加減法の連立方程式なら解けるのですが、手順を覚えているだけで、なぜそれで解けるのか理解していないのでしょうか。
    しかし、高校生になって使うのは、加減法よりも代入法のほうが多いのです。
    2つの解き方があるとき、1つのやり方しか理解しないのは危険です。

    上の恒等式の問題を解くときも、私も現実には係数比較法しか使いませんが、数値代入法の解き方も理解しておいてください。
    2つとも、また別の問題で活用する考え方を含んでいます。

    さて、次回の数学教室のお知らせです。

    ◎日時  7月29日(土)10:00~11:30
    ◎内容  数Ⅱ「等式・不等式の証明」を続けます。p14例題2から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。




      


  • Posted by セギ at 15:42Comments(0)大人のための講座

    2017年07月03日

    7月15日(土)、大人のための数学教室を開きます。


    7月1日、大人のための数学教室を開きました。
    今回は「分数式の加法・減法」。
    例えば、こんな問題です。

    x-3         x-1
    x2-6x+8  -  x2-2x-8

    分数をこのブログに書き込んでいくのは難しいのですが、大体の感じはつかめていただけたかと思います。

    計算の基本は、数の計算と同じです。
    分数は、分母が等しくなければ引き算できません。
    すなわち、通分が必要となります。
    このまま、(x2-6x+8)(x2-2x-8)という分母にすることでも通分はできます。
    しかし、それは、普通の分数の通分で、例えば分母が6と8だったときに、それを通分するのに48としてしまうようなものです。
    後の計算が煩雑になる悪手です。
    互いの共通因数を考えて通分しましょう。

    それにはまず、分母をそれぞれ因数分解してみます。
    x2-6x+8=(x-2)(x-4)
    x2-2x-8=(x+2)(x-4)
    (x-4)が共通因数であることがわかります。
    よって、通分した後の分母は、(x-2)(x+2)(x-4)
    このように通分するのですから、それぞれの分子は、それまでの分母にはなかった因数をそれぞれにかけて、
    (分子)=(x-3)(x+2)-(x-1)(x-2)
    この後、分子の計算を行います。
    (分子)=x2-x-6-(x2-3x+2)
        =x2-x-6-x2+3x-2
        =2x-8
    これで、分子は2x-8、分母は(x-2)(x+2)(x-4)
    というところまで整理できました。
    普通の分数の計算でもそうですが、計算後は、約分できるかどうかを確認します。
    分子は2(x-4)と整理できます。
    分母の(x-4)と約分できることがわかります。
    よって、解答は、2/(x-2)(x+2)

    なぜこのような計算過程が必要なのか。
    それぞれの段階で、何のために何をやっているのか。
    高校2年生ともなりますと、数学嫌いな子は、もうそういうことがわからなくなっていて、ただ計算手順だけを覚えて定期テストをやり過ごすことしかできなくなっていることがあります。
    そのため、定期テストの半月後くらいには、こうした計算問題さえ手も足も出ない子もいます。
    やっていることの意味がわかっていない勉強は、確かに不毛です。

    「数学が世の中の役に立っていることを否定するつもりはない。でも、自分が数学を勉強しなければならない意味はわからない」
    昔、極端な文系秀才の生徒からこのように言われて、言っていることの筋が通っていると感心したことがあります。
    後は、教育システムの問題です。
    では、どの段階で文系・理系の判断をするのか?
    彼ほどに明瞭で極端な文系秀才ならば何の問題もないのでしたが、普通の高校1年は自分が文系か理系かの判断はつかない場合がほとんどです。
    高校1年までは、「数学と歴史が得意。国語と理科が苦手」といった判断に窮する傾向の子のほうがむしろ多いです。
    しかし、高校2年で学習する科目は専門性が高まります。
    「得意なつもりでいたけど、ここまでやるとなると、何かもう訳がわからない。無理だな」
    という判断もあるでしょうし、
    「皆は苦手だ嫌いだと言うんだけど、自分はこの科目好きだな。何か急に面白くなってきた。これを大学で勉強するためなら、受験に必要な他の科目も頑張れる気がする」
    という判断もあると思います。
    高校2年まで数学をやることで判断がつくことはあるんじゃないですかね。
    この話をすると、さすがは秀才、それもすぐに理解してくれました。

    理系秀才にとって、古文・漢文の授業もまた、
    「古典を貶める気持ちはないが、自分が古文・漢文を学ぶ意味はわからない。自分が原文を読めるようになる必要はないし、読めるようにはならないと思う。内容だけなら知りたいが、それなら現代語訳で十分だ」
    とも言えます。
    高校2年生まで同じ教育課程であるのは、壮大な無駄のような気もする一方、しかし、全ての子どもに平等な機会を与えるという点では、文系・理系の判断は遅いほうが良いでしょう。
    以前も書きましたが、効率だけを考えたあげく、例えば12歳で学力テストを行い、学力が基準に満たない者にはそれ以上の教育は与えず、基準を満たした者はその能力にあわせ、選抜して専門科目のみ教育する、などという社会が素晴らしい社会だとは到底思えません。
    そんなのは、悪夢でしかありません。
    自分には必要なさそうな数学や古文も勉強するのは、義務じゃなくて、権利なんだ。
    ヽ(^。^)ノ

    話は分数式の計算に戻って。


    2x-5    2x2+9x-28
    x-4  -  x2+2x-24

    さて、これも、上の問題と同じように計算していくこともできるのですが、それぞれの分子と分母を見比べて、分子の係数や次数が分母より大きい場合、もっと整理してからのほうが計算が楽にできます。
    普通の分数の計算で言えば、仮分数を帯分数に直して計算するような感覚です。
    ここで、前回学習した(多項式)÷(多項式)の計算が活きてきます。

    (2x-5)÷(x-4)=2あまり3
    (2x2+9x-28)÷(x2+2x-24)=2あまり(5x+20)

    よって上の分数式は、


          3          5x+20
    2 + x-4  -2 - x2+2x-24 

    と整理されます。

    普通の分数の仮分数を帯分数に直すのと全く同じことをやっています。
    そうすることで、整数は整数同士で、分数は分数同士で引けばよいので、かなりスッキリします。
    その後の計算方法は上の問題と同じです。
    分子の次数が抑えられて、計算しやすくなります。

    ◎日時  7月15日(土)10:00~11:30
    ◎内容  数Ⅱ「整式と分数式」を続けます。p12から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。









      


  • Posted by セギ at 12:26Comments(0)大人のための講座

    2017年06月27日

    夏期講習のお知らせ。2017年夏。


    2017年度夏期講習のお知らせです。
    詳細は、今週、各生徒さんに書面をお渡ししておりますのでご覧ください。
    お申込み受付は、7月1日(土)からとなります。
    申込書またはメールでお申込みください。
    なお、この期間、通常授業はありませんので、いつもの時間帯の授業を希望される方も改めてお申込みください。
    8月通常授業はございませんので、8月分通常授業料のお支払いは不要です。
    通常授業の空きコマがないため、外部生の受講は承っておりません。
    大変申し訳ありません。

    以下は、夏期講習募集要項です。

    ◎期日
    7月24日(月)~8月31日(木) 
    ただし、毎週日曜日と、8月7日(月)~12日(土)は休校となります。

    ◎時間帯
    10:00~11:30 , 11:40~13:10 , 13:20~14:50 , 15:00~16:30 , 16:40~18:10 , 18:20~19:50 , 20:00~21:30

    ◎費用
    1コマ90分4,000円×受講回数+諸経費4,000円

    ◎指導科目
    小学生 一般算数・受験算数・英語
    中学生 数学・英語
    高校生 数学・英語


    ◎空きコマ状況 8月26


    8月29日(火)
    16:40~18:10 , 18:20~19:50

    8月30日(水)
    15:00~16:30 , 18:20~19:50 , 20:00~21:30

    8月31日(木)
    11:40~13:10 , 13:20~14:50 ,18:20~19:50



      


  • Posted by セギ at 15:37Comments(0)大人のための講座

    2017年06月18日

    7月1日(土)、大人のための数学教室を開きます。


    6月17日(土)、大人のための数学教室を開きました。
    今回は「多項式の除法」です。
    中学数学でやっているような気がするのに、意外に一度もやっていないのが、多項式の除法です。

    問題 (x3+3x2-5)÷(x-2) を計算し、商と余りを求めよ。
    これは筆算していくことができます。
    やり方、考え方は数字のわり算の筆算と同じです。

    例えば、764÷6を筆算してみましょう。

    6 )764

    の7と6を見比べて、7の上に「1」という商が立つと判断します。
    その後、1と6をかけたものを7の下に書いていき、そして7からそれを引きます。
       1
    6 )764
       6  
       1

    これと同じことをやっていきます。

    x-2 )x3+3x2   -5

    x3とxを見比べて、x3の上に「x2」という商が立つと判断します。
    そのx2と「割る数」であるx-2とをかけたものを元の式に下に書いていきます。

        x2
    x-2 )x3+3x2   -5
         x3-2x2

    そして、元の式から、今書いたものを引いていきます。

        x2
    x-2 )x3+3x2   -5
         x3-2x2
            5x2

    次に、引き算の結果である「5x2」とx-2を見比べで、商を立てます。
    「5x」という商が立ちます。
    その5xとx-2をかけたものを下に書いていきます。
    そして、上の行から下の行を引きます。

        x2+5x
    x-2 )x3+3x2     -5
         x3-2x2
            5x2
            5x2-10x
                10x -5

    次に、引き算の結果である「10x」とx-2を見比べて、商を立てます。
    「10」という商が立ちます。
    その10とx-2とをかけたものを下に書き、上の行から下の行を引きます。

        x2+5x  +10
    x-2 )x3+3x2     -5
         x3-2x2
            5x2
            5x2-10x
                10x -5
                10x-20
                    15

    よって、商は x2+5x+10、余りは15です。

    「本当にこんなやり方で割ったことになるの?」
    「何でそれで答えが出るのか、意味がわからない」
    という感想の多いところです。

    そこで、ちょっと検算をしてみましょう。
    わり算は、(割る数)×(商)+(余り)=(もとの数)
    で検算することができるのでした。

    (x-2)(x2+5x+10)+15
    =x3+5x2+10x-2x2-10x-20+15
    =x3+3x2-5

    はい。
    もとの式に戻りました。

    やり方が理解できても、最初のうちはなかなか正答できない高校生は多いです。
    ミスしやすい箇所としては、多項式の書き写し間違い。(特に指数と符号)
    上の式の-5-(-20)のような箇所の計算ミス。
    練習を重ねることで精度を上げていきましょう。

    問題 (a3+2abc+b3-c3)÷(a+b-c) をaに着目して行い、商と余りを求めよ。

    最初の問題との違いは、文字が1種類ではないこと。
    「aに着目して」ということは、aについての文字式とみなし、他の文字は係数や定数項として扱いなさい、という意味です。
    これは、筆算として書くときから順番を意識し、他の文字はaの係数や定数項であるとわかるようにしておくことで解きやすくなります。
    aについて降べきの順に整理して書いてみましょう。

    a+(b-c) )a3     +2bca+(b3-c3)

    a3とaを見比べると、まずa2という商が立ちます。
    その商と「割る数」であるa+(b-c)をかけていきます。

           a2
    a+(b-c) )a3        +2bca+(b3-c3)
             a3+(b-c)a2 

    上の行から下の行を引きます。
    上から次に使う項も下ろしておきます。

           a2
    a+(b-c) )a3        +2bca+(b3-c3)
             a3+(b-c)a2
              -(b-c)a2+2bca

    ここでは、2次の項はもともと存在しなかったところから(b-c)a2を引くので、
    0-(b-c)a2
    =-(b-c)a2
    となることに注意が必要です。
    上からおろしてくる項は、あえて書けば、
    2bca-0
    =2bca
    となりますので、符号は変わりません。
    0から引くことと、0を引くこととは大違いですね。

    次に-(b-c)a2とaを見比べて、-(b-c)aという商が立ちます。

           a2-(b-c)a
    a+(b-c) )a3        +2bca+(b3-c3)
             a3+(b-c)a2
              -(b-c)a2+2bca
              -(b-c)a2-(b-c)2a

    例によって、上の行から下の行を引くのですが、ちょっと複雑で引きにくいですね。
    こういうときは、ノートの横の空欄などを利用して、そこの部分だけ計算すると良いでしょう。
    係数だけのひき算をすれば良いですね。
    すなわち、
    2bc+(b-c)2
    =2bc+b2-2bc+c2
    =b2+c2

    上から定数項も下ろしてくると、

           a2-(b-c)a
    a+(b-c) )a3        +2bca+(b3-c3)
             a3+(b-c)a2 
              -(b-c)a2+2bca
              -(b-c)a2-(b-c)2a
                      (b2+c2)a+(b3-c3)

    次の商は、(b2+c2) ですね。

           a2-(b-c)a +(b2+c2)
    a+(b-c) )a3        +2bca   +(b3-c3)
             a3+(b-c)a2 
              -(b-c)a2+2bca
              -(b-c)a2-(b2+c2)a+(b3-c3)
                      (b2+c2)a+(b-c)(b2+c2)

    最後の定数項のひき算も複雑ですね。
    ノートの空いているスペースで計算しましょう。
    (b3-c3)-(b-c)(b2+c2)
    =b3-c3-(b3+bc2-b2C-c3)
    =b3-c3-b3-bc2+b2C+c3
    =-bc2+b2c

    これが余りとなります、
    よって、商は  a2-(b-c)a+(b2+c2)
    となりますが、整理したほうが見た目がきれいですね。
    ( )を外しておきましょう。
    従って、商 a2+b2+c2-ab+ca
        余り -bc2+b2c
    となります。

    この筆算は複雑ですが、この先、「分数式の計算」や「因数定理」を学習する際にまた利用しますので、必ず身につけておきましょう。
    とはいえ、ネットでは罫線を引けないので、物凄く見にくいですね。
    全体の板書が上の画像です。

    さて、今回の授業はその次の「分数式の約分」に少し入りました。
    次回はその次から進みます。

    ◎日時  7月1日(土)10:00~11:30
    ◎内容  数Ⅱ「整式と分数式」を続けます。p10問題22から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。




      


  • Posted by セギ at 13:44Comments(0)大人のための講座

    2017年06月04日

    6月17日(土)、大人のための数学教室を開きます。


    6月3日(土)、大人のための数学教室を開きました。
    今回は、「多項定理」の学習です。
    例えば、こんな問題です。

    問題 (a+b+c)7の展開式におけるa3b2c2の係数を求めよ。

    まずは、(a+b+c)7を逐一展開することをイメージしましょう。
    考え方の基本は二項定理のときと同じです。
    (a+b+c)(a+b+c)(a+b+c)(a+b+c)(a+b+c)(a+b+c)(a+b+c)
    と書いてみるとよりわかりやすいですが、この7つの( )から文字を1つずつ選んでかけたものが、展開した際の1つ1つの項となります。

    aaaaaaaすなわちa7は1度しか出てきませんので、係数は1だとすぐわかりますが、aaabbccすなわちa3b2c2は、何回も同じものが出てくるでしょう。
    aaabbccだったり、aababccだったりと、文字の順番はそれぞれ違うでしょうが、まとめるとa3b2c2となることに変わりはない同類項です。
    そしてそれの出てきた回数が、a3b2c2の係数となるでしょう。
    それは、aaabbccを並べる順列の数と同じでしょう。
    すなわち、ここでも用いるのは「同じものを含む順列」です。

    「同じものを含む順列」の考え方は2通りあります。
    前回は並んだ箱をイメージして、特定の文字を入れる箱をそこから選ぶという考え方を用いました。
    今回は別の考え方を用いてみます。
    aaabbccで言えば、まずは7つの文字の順列を単純に考えます。
    すなわち、7P7=7!ですね。
    しかし、これは、同じ文字を別のものとして数えています。
    aについて考えれば、aの後ろに番号をつけて区別して、3つのa1,a2,a3をそれぞれ別の文字として数えていることになります。
    しかし、表面的には、それらは同じ文字です。
    a1,a2,b,a3,b,c,c も、
    a2,a3,b,a1,b,c,c も、実質は同じ並べ方で、区別する必要がありません。
    7!では、同じ並べ方を何度もかぶって計算していることになります。
    どれだけかぶって計算しているでしょうか?

    上の例で言えば、
    〇〇b〇bcc
    の〇の位置にaがあります。
    その3つの〇にa1,a2,a3を並べる順列だけ、同じ並べ方を何度もかぶって計算しているでしょう。
    すなわち、aに関しては、7!を3!で割ることで本当の順列の数が出てきます。

    次に、bについてはどうでしょう。
    これも同じで、2つのbの位置にどちらのbを入れても実質は同じなので、bの並べ方だけかぶって計算していますから、2!で割ることで本当の順列の数が出てきます。
    最後のcについても同様に、2!で割ることで本当の順列の数が出てきます。
    すなわち、7!/(3!2!2!)をすることで、正しい順列の数が導かれます。
    7!/(3!2!2!)
    =(7・6・5・4・3・2・1)/(3・2・1・2・1・2・1)
    =7・6・5
    =210
    これがa3b2c2の係数です。


    「前回のようなCを使った求め方はできないんですか」
    という質問が授業中にありましたので、そちらも解説しました。
    上の問題で言えば、まず7つの並んだ箱をイメージします。
    その7つから、aを入れる3つの箱を選びます。
    すなわち、7C3です。
    次に、残った4つ箱からbを入れる箱を選びます。
    これは、4C2です。
    上の2つは積の関係が成り立ちますから、
    7C3・4C2で全体の数を求めることができます。
    ここで、残った2つの箱には自動的にcが入ります。
    だから計算しなくても良いのですが、2つの箱から2つを選ぶ、すなわち2C2をやるとしても、同じ結果になります。
    2C2=1です。
    それをあえて書くと、
    7C3・4C2・2C2
    =(7・6・5/3・2・1)×(4・3/2・1)×(2・1/2・1)
    分数で表記するとよりわかりやすいと思いますが、これは上の解き方の、
    (7・6・5・4・3・2・1)/(3・2・1・2・1・2・1)
    と全く同じ式です。
    結局、この2つは同じ解き方なのです。

    だとしたら、上の解き方のほうが、簡単に立式できますね。
    7!/3!2!2!
    の分子の「7」はどこから来た数字かというと、(a+b+c)7の「7」です。
    分母の3!2!2!の「3」「2」「2」は何の数字かというと、a3b2c2という項のそれぞれの文字の指数です。
    与えられた式の指数と求める項の指数を見ただけでささっと立式できます。
    これが多項定理です。

    別の問題も解いてみましょう。
    問題 (a-b+2c)7 の展開式におけるa2b3c2の係数を求めよ。

    まず、7!/(2!3!2!)ですが、これだけではありません。
    それぞれの項に1以外の係数がありますので、それも考えます。
    bの係数は-1ですので、(-1)3をかけることが必要です。
    cの係数は2ですので、22もかけなければなりません。
    したがって、
    7!/(2!3!2!)・(-1)3・22
    =-210・4
    =-840
    これが答えとなります。

    さて、今回ご参加は1名様で、スルスルと授業が進み、予定していなかった「多項式÷多項式」に入りました。
    次回は、その確認から入ります。


    ◎日時  6月17日(土)10:00~11:30
    ◎内容  数Ⅱ「整式と分数式」を続けます。p8「多項式のわり算」から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。







      


  • Posted by セギ at 16:52Comments(0)大人のための講座

    2017年05月25日

    6月3日(土)、大人のための数学教室を開きます。


    5月20日(土)、大人のための数学教室を開きました。
    前回と同じく「二項定理」の学習です。
    二項定理は、例えば、(a+b)5などを展開していく際に用いる定理ですが、全て展開するのではなく、必要な項の係数だけを求めることもできます。
    例えば、こんな問題です。

    例題 (x+2)6 を展開したときの、x3の係数を求めよ。

    全て展開していくのだとしたら、二項定理を用いて、以下のようになります。
    (x+2)6
    =6C0x6+6C1x5・2+6C2x4・22+6C3x3・23+6C4x2・24+6C5x・25+6C6・26
    =X6+12x5+30x4+160x3+240x2+192x+64
    前回も解説した通り、xの6乗の項は、6個の(x+2)から全てxを選んでかけている項です。
    それは1通りしかありませんので、係数は1です。
    xの5乗の項は、6個の(x+2)から5個のxと1個の2を選んでかけている項です。
    それは、xxxxx2を並べる順列と同じ個数だけ同類項があります。
    同じものを含む順列の考え方を用いて、6C1=6。
    係数としては、2も係数となりますので、6×2=12となります。
    xの4乗の項は、6個の(x+2)から4個のxと2個の2を選んでかけている項。
    それは、xxxx2・2を並べる順列と同じ個数だけあります。
    同じものを含む順列の考え方を用いて、6C2=15。
    2・2も係数となりますので、15×4=60。
    この辺で法則が見えてきたと思います。

    例えば、6C2の「6」は、(x+2)6の「6」です。
    6C2の「2」は、(x+2)の2を「2個」選んでいることを示します。
    それはxを6-2=4(個)選んでいるということでもあります。

    では、問題のx3の係数はどう求めることができるでしょうか。
    x3ということは、6個の(x+2)から、xを3個選んだということ。
    それは、2のほうを6-3=3(個)選んだということです。
    すなわちx・x・x・2・2・2の並べ方だけ、同類項が存在します。
    6C3=(6・5・4)÷(3・2・1)=20。
    2の3乗も係数となりますから、20×23=160。
    答えは、160となります。

    二項定理は、2項のうちの前の項、(x+2)で言えばxの項を初めは6回かける項、次はxを5回2を1回かける項というように、前の項を1個ずつ減らし、後の項を1個ずつ増やしていく形をとっています。
    最後は、全て後の項、(x+2)で言えば2を6回かけて終わります。
    二項定理の一般項は、nやrやn-rといった文字を用いるためか、それで混乱する高校生がいるのですが、全体の流れを把握することで一般項の意味を理解するとよいと思います。

    もう少し解いてみましょう。
    例題 (2x-3y)7 を展開したときのx4y3の係数を求めよ。

    xの項もyの項もそれぞれ1以外の係数がついているのに注意する必要がありますね。
    それらも全て項全体の係数に含まれていきます。
    x4y3の項ですから、7個の( )から、xを4回yを3回選んでかけます。
    すなわち、7C3。
    それに、xの係数である2の4乗、yの係数である(-3)の3乗も係数となります。
    7C3・24・(-3)3
    =(7・6・5)÷(3・2・1)×16×(-27)
    =-15120
    これが答えです。


    さて、ここからは応用です。
    易しい教科書や問題集には載っていない問題です。
    考えてみましょう。
    例題(3x2+x)8 を展開したときの x10の係数を求めよ。
    ( )内のどちらの項にもxが含まれています。
    どんなときにx10になるのでしょうか?

    3x2をp回、xをq回かけた項がxの10乗の項であるとします。
    ( )は全部で8個ですから、
    p+q=8・・・・➀ となります。
    また、x10という結果になることを踏まえると、指数法則から、
    2p+q=10・・・② となります。
    ➀・②を連立して解くと、
    p=2、q=6
    よって、3x2を2回、xを6回かけた項がxの10乗の項であるとわかります。
    あとは、二項定理にあてはめて、係数は、
    8C6・32・16
    =(8・7)÷(2・1)×9
    =4・7・9
    =252
    これが答えです。

    さらにこのような問題はどうでしょうか。
    例題 (x2+1/x)10 を展開したときのx11の係数を求めよ。

    後の項は分母にxがある分数なので、前の項とかけると、約分されてxの次数は減ってしまいます。
    x2をp回、1/xをq回かけるとすると、
    p+q=10 ・・・➀ であるのは今までの問題と変わりませんが、
    xの指数はたし算ではなくなります。
    約分されて減りますから、
    2p-q=11 ・・・② となります。
    ➀、②を連立して、
    3p=21、すなわちp=7、q=3 です。
    x2を7回、1/xを3回かけた項がxの11乗となることがわかりました。
    二項定理より、
    10C3=(10・9・8)÷(3・2・1)=10・3・4=120
    係数は120です。

    二項定理だけでなく、指数法則の理解が必要なので、こうした問題は易しい教科書や問題集からは除外されているのでしょう。
    使っている指数法則自体は中学校で学んでいる内容なのですが、pとかqとか抽象化されると「全くわからない」と言う高校生は多いのです。
    しかし、この先「指数関数」を学習した後に受験勉強で解き直すと、案外簡単に理解できることがあります。
    さて、次回の数学教室のお知らせです。

    ◎日時  6月3日(土)10:00~11:30
    ◎内容  数Ⅱ「整式と分数式」を続けます。p7「二項定理を用いた証明」から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。





      


  • Posted by セギ at 13:15Comments(0)大人のための講座

    2017年05月07日

    5月20日(土)、大人のための数学教室を開きます。


    5月6日(土)、大人のための数学教室を開きました。
    数Ⅱの学習に入り、まずは3次式の展開、そして3次式の因数分解と学習しました。
    今回は、4次以上の式の展開に進みます。

    例題 (a+b)4 を展開しなさい。

    これは「二項定理」を用いて解いていくのですが、「二項定理」を理解し活用するためには、数Aで学習した「同じものを含む順列」という学習内容が身についていることが必要です。
    そして、「同じものを含む順列」を理解するためには、「組合せ」の基本を理解していることが前提となります。
    前回の3次式の因数分解でもそうでしたが、数Ⅰ・数Aの学習内容が身についていないと、新しい定理や新しい学習内容が理解できない場合がこの先もどんどん増えていきます。

    高校生への授業でも、「二項定理」を説明していく過程で、生徒が「同じものを含む順列」や「組合せ」を理解していないことに気づき、それらの復習に入ることがあります。
    しかし、そこへ路線変更されたのが理解できなかったのか、「二項定理」と「同じものを含む順列」の説明を混同し、余計に混乱してしまう子もいます。
    説明する側はきちんと路線変更したつもりでも脱線事故が起こりやすいところです。

    ですので、行き詰ってから復習に入るのではなく、今回、まず基本から順番に復習しておきましょう。

    数A「場合の数と確率」の中で、まずは「順列」を学習しました。

    例題 a、b、c、dから3つを選んで順番に並べる方法は何通りあるか。

    これが「順列」です。
    樹形図をイメージして考えていけば良いですね。
    一番目にくる候補は4通り。
    2番目は、そのそれぞれから樹形図の枝が3通りに広がります。
    3番目は、さらにそこから2通りに広がっていきます。
    したがって、式は、4×3×2=24
    これを4P3=4・3・2=24
    と表します。
    答は24通りです。
    したがって、順列の一般式は、
    nPr=n(n-1)(n-2)・・・・(n-r+1)
    となります。
    最後の(n-r+1)の意味がよくわからないという生徒がときどきいますが、要するに、nから順番に1ずつ小さくなる数を全部でr個かけていくということです。
    上の4P3ならば、4から始めて、4・3・2と全部で3つの数をかけました。

    それに対して「組合せ」は順番は関係ない選び方です。
    例題 a、b、c、dから3つを選ぶ方法は何通りあるか。
    3つ選ぶだけなので、順番は関係ないですね。
    abcという選び方も、acbという選び方も、同じ選び方です。
    順番が関係ないことが「順列」との違いです。
    ですから、上の4P3の計算方法では、同じ選び方を何回もダブって数えてしまうことになります。
    具体的には、どれくらいダブって数えているのか。
    abcを例にとれば、そのabc3つの並べ方だけダブって数えているでしょう。
    abc、acb、bac、bca、cab、cbaの6通りです。
    この計算方法は、3つから3つを選んで並べる順列です。
    すなわち3P3=3・2・1=6 です。
    よって、組合せは、上の4P3を3P3で割れば求められます。
    (4・3・2)÷(3・2・1)=4
    答えは4通りです。
    一般式としては、
    nCr=nPr÷rPrですね。

    「組合せ」の基本の復習が終わったところで、次は「同じものが含まれる順列」の復習に進みます。
    例題 a、a、a、b、bの5文字の並べ方は何通りあるか。
    これは、普通の順列5P5ではダメですね。
    普通の順列の計算では、3個あるaや2個あるbをそれぞれ区別して並べてしまうことになりますが、見た目が同じものは、同じ並べ方です。
    このaとあのaは実は違うと言われても、見た目が同じですから、同じ並べ方として数えるしかありません。
    5P5では、同じ並べ方を何回もダブって数えてしまうことになります。

    では、どうするか?
    同じものが含まれる順列は、これらの文字を入れる箱をまずイメージします。
    5個の箱が横に並んでいます。
    その箱のどれにa3個を入れるかを考えます。
    残る2個の箱には自動的にbが入ります。
    3個の箱の選び方で、上の5文字の並べ方を求めることができます。
    すなわち、5C3=(5・4・3)÷(3・2・1)=10
    答えは10通りです。
    ちなみに、bを入れる箱2個を選んでも同じ結果となります。
    5C3=5C2です。
    5C2=(5・4)÷(2・1)=10
    同じですね。

    さて、以上で復習が終わりました。
    いよいよ、ここから一番上の問題を解いていきますよー。

    例題 (a+b)4 を展開しなさい。

    ( )を全て書いていけば、
    (a+b)(a+b)(a+b)(a+b)
    となります。
    これを公式などを使わず、逐一展開していくと、
    =aaaa+aaab+aaba+aabb+abaa+abab+abba+abbb+baaa+baab+baba+babb+bbaa+bbab+bbba+bbbb
    同類項をまとめて、
    =a4+4a3b+6a2b2+4ab3+b4
    となります。
    ( )の中の文字aとbのどちらか1つを選んで4つ並べていくことで1つの項が形成されるのをご理解いただけるでしょうか。
    これを、このように逐一展開するのではなく、計算で解いていく方法はないでしょうか。

    aaaaすなわちa4という項は1つしかないことは逐一展開しなくても予想がつくでしょう。
    aaab、すなわちa3bは、逐一展開する中で何回か同じものが出てくるでしょう。
    それは、何回出てくるのでしょうか?
    その回数がa3bの係数となるでしょう。
    その計算方法はないでしょうか?
    それは、aaabの4文字の並べ方と同じ数ではないでしょうか。
    何番目の( )からbを選んだかの数と同じという言い方もできます。
    「同じものを含む順列」の考え方をここで利用できます。
    aaabの4文字を並べる順列。
    4C1=4です。

    次に、aabb、すなわちa2b2の係数はどうなるでしょう。
    aabbの4文字を並べる順列の数と同じでしょう。
    すなわち、4C2=(4・3)÷(2・1)=6です。

    abbb、すなわちab3の係数はどうでしょう。
    abbbの4文字を並べる順列の数と同じでしょう。
    すなわち、4C3=4C1=4です。

    最後にbbbb、すなわちb4は、1回しか出てこないとすぐに判断できますが、これも組合せの考えを使うならば、
    4C4=1とみなすことができます。
    ならば、最初のaaaaすなわちa4の係数も、4C0=1とみなすことができますね。
    bを1回も選ばないということです。

    よって、
    (a+b)4
    =4C0a4+4C1a3b+4C2a2b2+4C3ab3+4C4b4
    =a4+4a3b+6a2b2+4ab3+b4

    逐一展開したときと同じ結果になりました。ヽ(^。^)ノ

    これを一般化したものが「二項定理」です。
    二項定理をここに書こうかと思いましたが、上の式でも読みにくいのに、nだのrだと文字ばかりになると最悪の読みにくさなので、興味のある方は検索してみてください。

    さて、今回ご参加は一名様でした。
    今回ご参加の方から次回欠席のご連絡をいただきましたので、この「二項定理」の説明を次回もやろうと思います。
    数A「組合せ」の基本と「同じものを含む順列」を復習し、「二項定理」の理解に集中できる状態にしておいていただけますと、スムーズでしょう。

    ◎日時  5月20日(土)10:00~11:30
    ◎内容  数Ⅱ「整式と分数式」を続けます。p6「二項定理」から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。






      


  • Posted by セギ at 15:42Comments(0)大人のための講座

    2017年04月26日

    5月6日(土)、大人のための数学教室を開きます。


    4月22日(土)、大人のための数学教室を開きました。
    本日は数Ⅱの2回目。「3次式の因数分解」の授業を行いました。
    まずは公式通りに代入すれば正解に至る問題を練習した後、少し応用問題に入りました。
    例えば、こんな問題です。

    問題 x6-64 を因数分解しなさい。

    シンプルに見えて、これが意外に難しかったようです。

    3次式の因数分解の公式にこういうものがあります。
    a3-b3=(a-b)(a2+ab+b2)
    直前まで、この公式を使うための基本練習をしていますから、当然それに引きずられます。

    xの6乗は、xの2乗の3乗。
    64は、4の3乗。
    ということは、
    x6-64
    =(x2-4)(x4+4x2+16)
    =(x+2)(x-2)(x4+4x2+16)
    よし、できたー。ヽ(^。^)ノ
    と思ってしまうのですね。
    しかし、これは正解ではありません。

    x4+4x2+16 は、さらに因数分解できます。
    数Ⅰで学習しました。
    複2次式の因数分解というものです。
    x4+4x2+16
    =x4+8x2+16-4x2
    =(x2+4)2-(2x)2
    =(x2+4+2x)(x2+4-2x)
    =(x2+2x+4)(x2-2x+4)
    平方完成の考え方を利用する解き方です。
    存在しないものをあえて足し、その後同じものを引いて辻褄をあわせます。
    そんなことをしていいの?とキョトキョトする高校生もいます。
    そのときは理解できても、定期テストが終わると、もう忘れてしまう子も多いです。

    子どもは天性の陽気さを持ち、楽天的で、接していてそれに助けられることは多いのですが、
    「数ⅠAくらいは大丈夫だから」
    と言う子もいて、ちょっと困ってしまうこともあります。
    定期テスト以降、一度も復習らしいことをしていないのに、どうして大丈夫だと思うのでしょう。
    数Ⅱの学習になると、数Ⅰとは段違いの難しさにびっくりして、理系に行くつもりだった子も諦めて文系に進路変更することがありますが、数Ⅱが難しいというよりも、数Ⅰの学習内容が身についていないから数Ⅱがわからない場合は多いです。
    今回のこの因数分解の問題もそうですね。

    それにしても、この問題、本当にこんなに難しい解き方しかないのでしょうか?
    実は、もっと易しいやり方があるのです。

    x6-64
    =(x3+8)(x3-8)
    =(x+2)(x2-2x+4)(x-2)(x2+2x+4)

    中3で学習した2次式の因数分解の公式、a2-b2=(a+b)(a-b)をまず利用します。
    その後、3次式の因数分解の公式を利用すると、このように簡単に解いていくことができます。
    3次式の因数分解を勉強したのだから、3次式の公式だけを使うのだ。
    そういうふうに視野が狭くなっていると、一番上の解き方しか発想できません。
    とにかく視野を広くして、これまで学習したことは全て使うのだと思って解いていくと、楽な解き方を発想できると思います。

    続いて、「3次式の展開公式の利用」。
    こんな問題です。
    x+1/x=3のとき、x3+1/x3の値を求めよ。

    対称式の値に関する問題です。
    これも基本は数Ⅰで学習済みです。

    しかし、基本対称式は、和と積と2本の式があるはずなのに、この問題は和の式しかない。これじゃ、解けないよ。

    こういうふうに考えてしまう子は、x・1/x=1 となることに気づいていないのです。
    何年か前、数学が苦手な男子高校生とこんな会話を交わしたことがあります。
    「x・1/x=1になるんですよ」
    「何でですか」
    「約分すると、そうなりますよ」
    「どうしてですか」
    「分母のxと分子のxを約分すると、1になるでしょう?」
    「でも、xって、何の数かわからないじゃないですか」
    「・・・・え?」
    「何の数かわからないのに、約分していいんですか」
    xが0の場合はダメなのですが、今回はそうではないし、その話をすると余計に混乱しそうです。
    「・・・・いいですよ。分母のxが例えば8なら、分子のxも8なのだから、約分できるじゃないですか」
    「xが8って、何でわかるんですか」
    「『例えば』と言いましたよ。8でも7でも、分母のxと分子のxは同じ数ですから、約分できますよ」
    「分母のxが8で、分子のxが7だったら、どうするんですか」
    「そういうことはないから、大丈夫ですよ」
    「何で大丈夫だってわかるんですか」

    ・・・・うーん、これは厄介だ。
    数学が苦手な子の頭の中で、「変数x」は、こんなにも不安定なものなのだなあと感じました。
    数Ⅰの復習云々ではなく、小学校の「関係をあらわす式」のあたりから、もうxとyに不信感があり、理解したふりで理解できずに高校生になってしまったのだろうと思います。
    方程式のときはxの値が定まったり。
    関数になると定まらなかったり。
    数学がわからない子は、このあたりが特に混沌としているのかもしれません。
    この子は、中学生の頃はほとんど無言で何を考えているのかよくわからない子でした。
    勉強全体が苦手なのだけれど、何がどうわからないのか語ることもありませんでした。
    高校生になって遅い反抗期が来た様子で、ふいに饒舌になり、今まで不信を抱いていたことを語るようになりました。
    喧嘩ごしのことも多く、対応が大変でしたが、ああ、こういうことがわからないのかと知る機会があったのを懐かしく思い出します。

    ともかく、上の問題を解いてみましょう。
    x+1/x=3 のときのx3+1/x3の値です。
    これは、この公式を利用します。
    a3+b3=(a+b)3-3ab(a+b)
    何でそうなるというほどのものではなく、右辺を展開すれば左辺になりますね。
    対称式の値を求めるために作られた公式です。
    a2+b2=(a+b)2-2ab
    の3次式版、といったところです。

    x3+1/x3
    =(x+1/x)3-3x・1/x(x+1/x)
    =33-3・1・3
    =27-9
    =18

    さて、次回の大人のための数学教室のお知らせです。

    ◎日時  5月6日(土)10:00~11:30
    ◎内容  数Ⅱ「整式と分数式」の学習を続けます。p5「3次式の展開公式の利用」大問8 から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。





      


  • Posted by セギ at 13:05Comments(0)大人のための講座

    2017年04月09日

    4月22日(土)、大人のための数学教室を開きます。


    4月8日(土)、大人のための数学教室を開きました。
    今回が、数A最後の授業です。
    内容は、「分数の小数表示と記数法」。
    10進法の分数をn進法の小数に直す問題を解きました。

    例題 1/4を5進法の小数で表せ。

    これは、10進法の小数をn進法の小数に直すときと、基本の考え方は同じです。
    まず、
    1/4=a/5+b/5の2乗+c/5の3乗+・・・・①とおきます。
    ①×5をすると、
    5/4=a+b/5+c/5の2乗+d/5の3乗+・・・
    両辺の整数部分を比較して、
    a=1とわかります。
    次に両辺から1を引いて、
    1/4=b/5+c/5の2乗+d/5の3乗+・・・②とおきます。
    ②×5をすると、
    5/4=b+c/5+d/5の2乗+・・・・
    よって、b=1。
    左辺に1/4と5/4しか出てきませんから、以後は同じことの繰り返しですね。
    以下同様に、c=d=・・・・・=1とわかります。
    したがって、1/4=0.1111・・・・・です。

    さて、これでめでたく数Aの学習は終了し、授業の後半は数Ⅱのテキストに進みました。
    まずは中3の数学や高校数Ⅰで学習した乗法公式の復習をしました。
    新しく学習した内容はなく、全て、これまでの復習ですが、今までに出てきた乗法公式を全て並べるとちょっと圧迫感があったかもしれません。
    授業は少しずつ先に進み続けていますが、時間に余裕のある方は中3や高1のテキストに戻っての復習を並行して続けることをお勧めします。

    数Ⅱの学習は、とにかく大量に公式が出てきます。
    数Ⅰの5倍くらいの数の公式を新しく覚えることになります。
    「軌跡と領域」「三角関数」「指数関数・対数関数」「微分・積分」といった単元が並んでいますから。
    公式の数の多さに対する体感は5倍以上かもしれません。
    1つ1つの公式を大切に理解し、覚えていきましょう。

    さて、次回の数学教室のお知らせです。

    ◎日時  4月22日(土)10:00~11:30
    ◎内容  数Ⅱ「整式と分数式」の学習を続けます。p5「3次式の因数分解」から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。






      


  • Posted by セギ at 15:55Comments(0)大人のための講座

    2017年03月20日

    4月8日(土)、大人のための数学教室を開きます。


    前回の授業料合計6000円を、みちのく未来基金に寄付させていただきました。
    銀行振り込みをしたことをみちのく未来基金に連絡するメールに、「あの日、小学6年生だった子どもたちが、この春、大学に進学するのですね」とほんの1行書いたのですが、そのことに触れた真摯な返信を事務局からいただきました。
    大手企業がサポートする大規模な財団法人でありながら、何年経っても事務的にならず暖かい。
    今年も約100人がみちのく未来基金から奨学金を受けて希望の大学に進むとのことです。

    さて、3月18日(土)、大人のための数学教室を開きました。
    今回も「n進法」の続きです。
    例えば2進法ならば、「2の0乗の位」「2の1乗の位」「2の2乗の位」というように、1桁上がるごとに2の指数が上がっていくのだということを前回確認しました。
    では、小数はどのように扱われるのでしょうか?

    まず10進法で考えるのならば、小数は、小学生の頃からやっているように、小数第1位は「10分の1の位」、小数第2位は「100分の1の位」、小数第3位は「1000分の1の位」です。
    それは、「10分の1の位」「10の2乗分の1の位」「10の3乗分の1の位」と書き表すこともできます。
    1つ下の位から見て、1つ上の位はそれを10倍した数の桁、という関係が成立しているのが10進法です。

    2進法も同じように考えます。
    小数第1位は、「2分の1の位」、小数第2位は「2の2乗分の1の位」、小数第3位は「2の3乗分の位」です。
    そうすることで、1つ下の桁から見て1つ上の桁の数は2倍の関係が成立しています。
    ちなみに、2分の1は、指数では「2の-1乗」、2の2乗分の1は、指数では「2の-2乗」と表します。
    ところで、「2の2乗」を「にのじじょう」と読む人は多く、数学学会が公式に訂正しても、こういうことはなかなか改善されないのですが、「2の-2乗」を「にのマイナスじじょう」と読む人はさすがにそれよりは減ってきます。
    高校の数学の先生は「にじょう」と正しく読む人が多いことも関係しているかもしれません。
    「2乗」のときだけ「じじょう」と読むのは、本来、不自然なことです。
    数字は「いち、に、さん」と読みます。
    「いち、じ、さん」ではありません。
    「2乗」だけ「じじょう」と特別扱いの読み方をすることには理由がありません。
    しかし、自分が信じてきたことを否定されると拒絶反応が強い人もいます。

    「じじょう」は「自乗」という意味なんだ!
    という説を展開する人がいます。
    しかし、「2乗」だけそんな特別扱いをすることには理由がありません。

    「にじょう」なんて読み方はまぬけっぽいだろ!
    という人もいます。
    しかし、そういう主観は、数学とは関係ありません。

    ただ、読み方なんか究極どうでも良いので、生徒が「じじょう」と読むのを訂正はしないのですが、私が「にじょう」と読むのを生徒が「このセンセイ、読み方を間違えている」と感じているのではないかなあと考えてしまうことはあります。
    こういうことは多勢に無勢かもしれません。

    おっと話が逸れました。
    マイナスの指数の話でした。
    2分の1は、「2の-1乗」、2の2乗分の1は「2の-2乗」、2の3乗分の1は、「2の-3乗」。
    指数はこのように表記されます。
    これは、n進法の桁の仕組みと整合しています。
    指数がこのように負の数に拡張されることは、n進法を理解していると容易に納得できることです。
    指数の拡張は、詳しくは数Ⅱの「指数関数」で学習します。

    では、n進法に戻って、実際に問題を問いてみましょう。

    問題 10進数0.375を6進法で表せ。

    6進法の小数第1位は、6分の1の位。
    6進法の小数第2位は、6の2乗分の1の位。
    ですから、
    0.375=a/6+b/62+c/63+・・・・
    と表すことができます。
    この両辺を6倍すると、
    2.25=a+b/6+c/62+d/63+・・・・・
    b/6以下は、全て分母のほうが分子より大きい真分数ですから、両辺を比較すると、
    2=aであることがわかります。
    両辺から2=aを引いて、
    0.25=b/6+c/62+d/63+・・・・
    この両辺を6倍すると、
    1.5=b+c/6+d/62+e/63・・・・
    1=bであることがわかります。
    両辺から1=bを引いて、
    0.5=c/6+d/62+e/63+・・・・
    この両辺を6倍すると、
    3=c+d/6+e/62・・・・・
    3=cであり、d以降は0であることがわかります。
    よって、10進数0.375は、6進法では、2.13です。
    上のように、6倍して整数になったものを次の桁の数字と確定していきますので、それを利用した筆算が可能です。
    整数になったものを取り除きながら、次々と×6をしていく方法です。

    さて、春期講習を挟みますので、次回の数学教室は3週間後の4月8日(土)です。
    10進数の分数をn進法で表すやり方を学習します。
    あと1ページで数Aの学習内容は終了。
    ペースが良ければ、次回、数Ⅱのテキストをお配りします。

    ◎日時  4月8日(土)10:00~11:30
    ◎内容  数A「整数の性質」の学習を続けます。p116「分数の小数表示と記数法」から。
    ◎場所  セギ英数教室
           三鷹市下連雀3-33-13
             三鷹第二ビル 305
           春の湯さんの斜め前のビルです。
    ◎用具   ノート・筆記用具
    ◎参加費 2,000円
           当日集めさせていただきます。
    ◎予約  私の携帯メールかラインに、ご予約をお願いいたします。






      


  • Posted by セギ at 12:39Comments(0)大人のための講座